Ver registro no DEDALUS
Exportar registro bibliográfico



Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering (2012)

  • Authors:
  • DOI: 10.1007/s10856-012-4676-5
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10856-012-4676-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Materials Science: Materials in Medicine

    ISSN: 0957-4530

    Citescore - 2017: 2.65

    SJR - 2017: 0.647

    SNIP - 2017: 0.916

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FORP2309093pcd 2309093 estantes deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SASKA, Sybele; SCAREL-CAMINAGA, Raquel Mantuaneli; TEIXEIRA, Lucas Novaes; et al. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science, Secaucus, v. 23, n. 9, p. 2253-2266, 2012. Disponível em: < > DOI: 10.1007/s10856-012-4676-5.
    • APA

      Saska, S., Scarel-Caminaga, R. M., Teixeira, L. N., Franchi, L. P., Santos, R. A. dos, Gaspar, A. M. M., et al. (2012). Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science, 23( 9), 2253-2266. doi:10.1007/s10856-012-4676-5
    • NLM

      Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Santos RA dos, Gaspar AMM, Oliveira PT de, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering [Internet]. Journal of Materials Science. 2012 ; 23( 9): 2253-2266.Available from:
    • Vancouver

      Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Santos RA dos, Gaspar AMM, Oliveira PT de, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering [Internet]. Journal of Materials Science. 2012 ; 23( 9): 2253-2266.Available from:

    Referências citadas na obra
    Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. 2004;11:403–11.
    Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release. 2006;113:43–56.
    Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC. Tratamento das úlceras tróficas dos membros com um novo substituto de pele. Rev Bras Cir. 1990;80:257–83.
    Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol. 1990;24–25:253–64.
    Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.
    Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007;1:406–8.
    Fang B, Wan YZ, Tang TT, Gao C, Dai KR. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A. 2009;15:1091–8.
    Wiegand C, Elsner P, Hipler UC, Klemm D. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose. 2006;13:689–96.
    Chen YM, Xi TF, Zheng YD, Guo TT, Hou JQ, Wan YZ, Gao C. In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym. 2009;24:137–45.
    Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 2006;27:2141–9.
    Wolff LF, Mullally B. New clinical materials and techniques in guided tissue regeneration. Int Dent J. 2000;50:235–44.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.
    Brager MA, Patterson MJ, Connolly JF, Nevo Z. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res. 2000;18:133–9.
    Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J. 1992;11:1867–73.
    Bab I, Chorev M. Osteogenic growth peptide: from concept to drug design. Biopolymers. 2002;66:33–48.
    Chen YC, Bab I, Mansur N, Muhlrad A, Shteyer A, Namdar-Attar M, Gavish H, Vidson M, Chorev M. Structure–bioactivity of C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)]. J Pept Res. 2000;56:147–56.
    Hui Z, Yu L, Xiaoli Y, Xiang H, Fan Z, Ningbo H, Zhigang Y, Ping L, Yanhong Z, Qingjun M. C-terminal pentapeptide of osteogenic growth peptide regulates hematopoiesis in early stage. J Cell Biochem. 2007;101:1423–9.
    Chen ZX, Chang M, Peng YL, Zhao L, Zhan YR, Wang LJ, Wang R. Osteogenic growth peptide C-terminal pentapeptide [OGP(10-14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept. 2007;142:16–23.
    Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Goldstein D, Ikehara S, Kappas A, Abraham NG. HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone. 2010;46:236–43.
    Stewart JM, Young JD. Solid phase peptide synthesis. 2nd ed. Rockford, Illinois: Pierce Chemical Company; 1984.
    Chan WC, White PD. Fmoc solid phase peptide synthesis: a practical approach. New York: Oxford University Press; 2000.
    Kaiser E, Colescot RL, Bossinge CD, Cook PI. Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal Biochem. 1970;34:595–8.
    Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, Rosini S, Di Stefano A, Galeazzi M, Marcolongo R. Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. J Cell Biochem. 2006;98:1007–20.
    Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.
    de Oliveira PT, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25(3):403–13.
    Nanci A, Zalzal S, Gotoh Y, McKee MD. Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures. Microsc Res Tech. 1995;33:214–31.
    Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A. Morphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec. 1998;252:554–67.
    Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, Panzeri H, Rosa AL, de Oliveira PT. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate®). J Biomed Mater Res-Part A. 2007;82:545–57.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
    Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329:77–84.
    Wei B, Yang G, Hong F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym. 2011;84:533–8.
    Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta. 2008;471:61–9.
    Wiley JH, Atalla RH. Band assignments in the raman spectra of celluloses. Carbohydr Res. 1987;160:113–29.
    Schenzel K, Fischer S, Brendler E. New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose. 2005;12:223–31.
    Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. New York: Wiley; 2001.
    Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–67.
    Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13:1593–605.
    Greenberg Z, Gavish H, Muhlrad A, Chorev M, Shteyer A, AttarNamdar M, Tartakovsky A, Bab I. Isolation of osteogenic growth peptide from osteoblastic MC3T3 E1 cell cultures and demonstration of osteogenic growth peptide binding proteins. J Cell Biochem. 1997;65:359–67.
    Bab I, Gavish H, Namdar-Attar M, Muhlrad A, Greenberg Z, Chen Y, Mansur N, Shteyeu A, Chorev M. Isolation of mitogenically active C-terminal truncated pentapeptide of osteogenic growth peptide from human plasma and culture medium of murine osteoblastic cells. J Pept Res. 1999;54:408–14.
    Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, Chorev M, Bab I. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: Activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. J Cell Biochem. 2001;81:594–603.
    Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J Biol Chem. 2001;276:7586–92.
    Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280:7317–25.
    Schmitt DF, Frankos VH, Westland J, Zoetis T. Toxicologic evaluation of Cellulon(TM) fiber: genotoxicity, pyrogenicity, acute and subchronic toxicity. J Am Coll Toxicol. 1991;10:541–54.
    Moreira S, Silva NB, Almeida-Lima J, Rocha HA, Medeiros SR, Alves C Jr, Gama FM. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett. 2009;189:235–41.
    Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59:101–6.
    Cullen RT, Miller BG, Clark S, Davis JM. Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity. Inhal Toxicol. 2002;14:685–703.
    Yalkinoglu AO, Schlehofer JR, zur Hausen H. Inhibition of N′-methyl-N′-nitro-N′-nitrosoguanidine-induced methotrexate and adriamycin resistance in CHO cells by adeno-associated virus type 2. Int J Cancer. 1990;45:1195–203.
    Sumantran VN, Boddul S, Koppikar SJ, Dalvi M, Wele A, Gaire V, Wagh UV. Differential growth inhibitory effects of W. somnifera root and E. officinalis fruits on CHO cells. Phytother Res. 2007;21:496–9.
    Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro. 1989;3:317–21.
    Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A. 2006;76A:431–8.
    Pertile RA, Moreira S, Costa RM, Correia A, Guardao L, Gartner F, Vilanova M, Gama M. Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed. 2011;. doi: 10.1163/092050611X581516 .
    Greenberg Z, Chorev M, Muhlrad A, Shteyer A, Namdar M, Mansur N, Bab I. Mitogenic action of osteogenic growth peptide (OGP)-role of amino and carboxy-terminal regions and charge. Biochim Biophys Acta. 1993;1178:273–80.
    Bab IA, Einhorn TA. Polypeptide factors regulating osteogenesis and bone-marrow repair. J Cell Biochem. 1994;55:358–65.
    Robinson D, Bab I, Nevo Z. Osteogenic growth peptide regulates proliferation and osteogenic maturation of human and rabbit bone marrow stromal cells. J Bone Miner. Res. 1995;10:690–6.
    EN ISO. Biological evaluation of medical devices. Part. 1: Evaluation and testing, vol 10993-1:2003; 2003.
    Karsenty G. Transcriptional regulation of osteoblast differentiation during development. Front Biosci. 1998;3:d834–7.
    Ciancaglini P, Simao AM, Camolezi FL, Millan JL, Pizauro JM. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res. 2006;39:603–10.