Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Ergodic transport theory and piecewise analytic subactions for analytic dynamics (2012)

  • Authors:
  • USP affiliated authors: BRANDÃO, DANIEL SMANIA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00574-012-0023-1
  • Subjects: TEORIA ERGÓDICA; DINÂMICA UNIDIMENSIONAL; SISTEMAS DINÂMICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00574-012-0023-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s00574-012-0023-1 (Fonte: Unpaywall API)

    Título do periódico: Bulletin of the Brazilian Mathematical Society, New Series

    ISSN: 1678-7544,1678-7714

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Evidência: oa repository (via OAI-PMH doi match)
      • Licença:
      • Versão:
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Evidência: oa repository (via OAI-PMH doi match)
        • Licença:
        • Versão:
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Bulletin of the Brazilian Mathematical Society

    ISSN: 1678-7544

    Citescore - 2017: 0.42

    SJR - 2017: 0.406

    SNIP - 2017: 0.497


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2309919-10PROD-2309919
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LOPES, A. O; OLIVEIRA, E. R; BRANDÃO, Daniel Smania. Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bulletin of the Brazilian Mathematical Society, New York, Springer, v. 43, n. 3, p. 467-512, 2012. Disponível em: < http://dx.doi.org/10.1007/s00574-012-0023-1 > DOI: 10.1007/s00574-012-0023-1.
    • APA

      Lopes, A. O., Oliveira, E. R., & Brandão, D. S. (2012). Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bulletin of the Brazilian Mathematical Society, 43( 3), 467-512. doi:10.1007/s00574-012-0023-1
    • NLM

      Lopes AO, Oliveira ER, Brandão DS. Ergodic transport theory and piecewise analytic subactions for analytic dynamics [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 3): 467-512.Available from: http://dx.doi.org/10.1007/s00574-012-0023-1
    • Vancouver

      Lopes AO, Oliveira ER, Brandão DS. Ergodic transport theory and piecewise analytic subactions for analytic dynamics [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 3): 467-512.Available from: http://dx.doi.org/10.1007/s00574-012-0023-1

    Referências citadas na obra
    Bamón Rodrigo, Kiwi Jan, Rivera-Letelier Juan and Urzúa Richard. On the topology of solenoidal attractors of the cylinder. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23(2) (2006), 209–236.
    A. Baraviera, A.O. Lopes and P. Thieullen. A large deviation principle for equilibrium states of Hölder potencials: the zero temperature case. Stochastics and Dynamics, 6 (2006), 77–96.
    A.T. Baraviera, L.M. Cioletti, A.O. Lopes, J. Mohr and R.R. Souza. On the general XY Model: positive and zero temperature, selection and non-selection. Reviews in Math. Physics, 23(10) (2011), 1063–1113.
    A. Baraviera, R. Leplaideur and A.O. Lopes. Selection of measures for a potential with two maxima at the zero temperature limit. SIAM Journ. on Applied Dynamics, 11(1) (2012), 243–260.
    P. Bhattacharya and M. Majumdar. Random Dynamical Systems. Cambridge Univ. Press (2007).
    T. Bousch. Le poisson n’a pas d’arêtes. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 36 (2000), 489–508.
    T. Bousch. La condition de Walters. Ann. Sci. ENS, 34 (2001), 287–311.
    T. Bousch and O. Jenkinson. Cohomology classes of dynamically non-negative C k functions. Invent. Math., 148(1) (2002), 207–217.
    R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math, 470 (1975).
    S. Boyd. Convex Optimization. Cambrige Press (2004).
    X. Bressaud and A. Quas. Rate of approximation of minimizing measures. Nonlinearity, 20(4) (2007), 845–853.
    J.R. Chazottes and M. Hochman. On the zero-temperature limit of Gibbs states. Comm. Math. Phys., 297(1) (2010), 265–281 (2009).
    W. Chou and R. J. Duffin. An additive eigenvalue problem of physics related to linear programming. Advances in Applied Mathematics, 8 (1987), 486–498.
    J. Conway. Functions of one complex variable. Springer Verlag (1978).
    P. Collet P.J. Lebowitz and A. Porzio. The dimension spectrum of some dynamical systems. J. Stat. Phys., 47 (1984), 609–644.
    G. Contreras and R. Iturriaga. Global Minimizers of Autonomous Lagrangians, 2004, To appear.
    G. Contreras, A.O. Lopes and Ph. Thieullen. Lyapunov minimizing measures for expanding maps of the circle. Ergodic Theory and Dynamical Systems, 21 (2001), 1379–1409.
    G. Contreras, A.O. Lopes and E.R. Oliveira. Ergodic Transport Theory, periodic maximizing probabilities and the twist condition, preprint UFRGS (2011).
    J. Delon, J. Salomon and A. Sobolevski. Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math., 7 (2010), 2239–2258.
    E. de Faria and W. de Melo. Mathematical Tools for one-dimensonal dynamics. Cambridre Press (2008).
    W. de Melo and S. Van Strien. One-Dimensional Dynamics. Springer Verlag, (1996).
    J.P. Conze and Y. Guivarc’h. Croissance des sommes ergodiques et principe variationnel, manuscript circa (1993).
    A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer Verlag (1998).
    R.S. Ellis. Entropy, Large Deviation and Statistical Mechanics. Springer Verlag (1985).
    A. Fathi. Weak KAM Theorem and Lagrangian Dynamics, (2004), to appear.
    C. Gole. Symplectic Twist Maps. World Scientific (2001).
    E. Garibaldi and A.O. Lopes. Functions for relative maximization. Dynamical Systems, 22 (2007), 511–528.
    E. Garibaldi and A.O. Lopes. On the Aubry-Mather Theory for Symbolic Dynamics. Erg. Theo. and Dyn. Systems, 28(3) (2008), 791–815.
    E. Garibaldi, A.O. Lopes and Ph. Thieullen. On calibrated and separating subactions. Bull. Braz. Math. Soc., 40(4) (2009), 577–602.
    D.A. Gomes, A.O. Lopes and J. Mohr. The Mather measure and a Large Deviation Principle for the Entropy Penalized Method. Comm. in Contemp. Math., 13(2) (2011), 235–268.
    G. Gui, Y. Jiang and A. Quas. Scaling functions, Gibbs measures, and Teichmüller spaces of circle endomorphisms. Discrete Contin. Dynam. Systems, 5(3) (1999), 535–552.
    B.R. Hunt and G.C. Yuan. Optimal orbits of hyperbolic systems. Nonlinearity, 12 (1999), 1207–1224.
    H.G. Hentschell and I. Proccacia. The infinite number of generalized dimension of fractal and strange attractors. Physica, 8D (1973), 435–44.
    O. Jenkinson. Ergodic optimization. Discrete and Continuous Dynamical Systems, Series A, 15 (2006), 197–224.
    O. Jenkinson and J. Steel. Majorization of invariant measures for orientationreversing maps. Erg. Theo. and Dyn. Syst., (2009).
    R. Leplaideur. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity, 18(6) (2005), 2847–2880.
    A.O. Lopes, J. Mohr, R.R. Souza and P. Thieullen. Negative Entropy, Zero temperature and stationary Markov chains on the interval. Bull. Soc. Bras. Math., 40(1) (2009), 1–52.
    A.O. Lopes. The Dimension Spectrum of the Maximal Measure. SIAM Journal of Mathematical Analysis, 20(5) (1989), 1243–1254.
    A.O. Lopes. Entropy and Large Deviation. Nonlinearity, 3(2) (1990), 527–546.
    A.O. Lopes, E.R. Oliveira and P. Thieullen. The dual potential, the involution kernel and transport in ergodic optimization, preprint (2008).
    A.O. Lopes and E.R. Oliveira. On the thin boundary of the fat attractor, preprint (2012).
    R. Ma.é. Ergodic Theory and Differentiable Dynamics. Springer Verlag (1987).
    R. Ma.é. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9 (1996), 273–310.
    M. Martens and W. Melo. The multipliers of periodic points in one-dimensional dynamics. Nonlinearity, 12 (1999), 217–227.
    J. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 2 (1991), 169–207.
    J. Milnor. Dynamics in One Complex Variable. Princeton Press (2006).
    T. Mitra. Introduction to Dynamic Optimization Theory. Optimization and Chaos, Editors: M. Majumdar, T. Mitra and K. Nishimura, Studies in Economic Theory, Springer Verlag (2000).
    I.D. Morris. A sufficient condition for the subordination principle in ergodic optimization. Bull. Lond. Math. Soc., 39(2) (2007), 214–220.
    L. Olsen. A multifractal formalism. Adv. Math., 116(1) (1995), 82–196.
    W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, 187–188 (1990).
    A.A. Pinto and D. Rand. Existence, uniqueness and ratio decomposition for Gibbs states via duality. Ergodic Theory Dynam. Systems, 21(2) (2001), 533–543.
    M. Pollicott. Some applications of thermodynamic formalism to manifolds with constant negative curvature. Adv. Math., 85(2) (1991), 161–192.
    M. Pollicott. Symbolic dynamics and geodesic flows. Séminaire de Théorie Spectrale et Géométrie, No. 10, Année 1991–1992, 109–129, Univ. Grenoble I, Saint-Martin-d’Hères (1992).
    D. Ruelle. Repellers for real analytic maps. Ergodic Theory Dynamical Systems, 2(1) (1982), 99–107.
    F. Przytycki and M. Urbanski. Conformal Fractals: Ergodic Theory Methods. Cambridge Press (2010).
    M. Shub and D. Sullivan. Expanding endomorphisms of the circle revisited. Ergodic Theory Dynam. Systems, 5(2) (1985), 285–289.
    F.A. Tal and S.A. Zanata. Maximizing measures for endomorphisms of the circle. Nonlinearity, 21 (2008).
    M. Tsujii. Fat solenoidal attractors. Nonlinearity, 14 (2001), 1011–1027.
    C. Villani. Topics in optimal transportation. AMS, Providence (2003).
    C. Villani. Optimal transport: old and new. Springer-Verlag, Berlin (2009).