Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Polar multiplicities and Euler obstruction for ruled surfaces (2012)

  • Authors:
  • USP affiliated authors: GRULHA JUNIOR, NIVALDO DE GÓES - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00574-012-0021-3
  • Subjects: SINGULARIDADES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00574-012-0021-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00574-012-0021-3 (Fonte: Unpaywall API)

    Título do periódico: Bulletin of the Brazilian Mathematical Society, New Series

    ISSN: 1678-7544,1678-7714



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Bulletin of the Brazilian Mathematical Society

    ISSN: 1678-7544

    Citescore - 2017: 0.42

    SJR - 2017: 0.406

    SNIP - 2017: 0.497


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2310053-10PROD-2310053
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GRULHA JÚNIOR, Nivaldo de Góes; HERNANDES, Marcelo E; MARTINS, Rodrigo. Polar multiplicities and Euler obstruction for ruled surfaces. Bulletin of the Brazilian Mathematical Society, New York, Springer, v. 43, n. 3, p. 443-451, 2012. Disponível em: < http://dx.doi.org/10.1007/s00574-012-0021-3 > DOI: 10.1007/s00574-012-0021-3.
    • APA

      Grulha Júnior, N. de G., Hernandes, M. E., & Martins, R. (2012). Polar multiplicities and Euler obstruction for ruled surfaces. Bulletin of the Brazilian Mathematical Society, 43( 3), 443-451. doi:10.1007/s00574-012-0021-3
    • NLM

      Grulha Júnior N de G, Hernandes ME, Martins R. Polar multiplicities and Euler obstruction for ruled surfaces [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 3): 443-451.Available from: http://dx.doi.org/10.1007/s00574-012-0021-3
    • Vancouver

      Grulha Júnior N de G, Hernandes ME, Martins R. Polar multiplicities and Euler obstruction for ruled surfaces [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 3): 443-451.Available from: http://dx.doi.org/10.1007/s00574-012-0021-3

    Referências citadas na obra
    J.-P. Brasselet, Local Euler obstruction, old and new. XI Brazilian Topology Meeting (Rio Claro, 1998), 140–147, World Sci. Publishing, River Edge, NJ (2000).
    J.-P. Brasselet and N.G. Grulha Jr., Local Euler obstruction, old and new II. London Mathematical Society — Lectures Notes Series 380 — Real and Complex Singularities, Cambridge University Press, (2010), 23–45.
    J.-P. Brasselet and M.H. Schwartz, Sur les classes de Chern d’un ensemble analytique complexe. Astérisque, 82–83 (1981), 93–147.
    J.-P. Brasselet, D. Massey, A. Parameswaran and J. Seade, Euler obstruction and defects of functions on singular varieties. Journal London Math. Soc. (2), 70(1) (2004), 59–76.
    G. Gonzalez-Sprinberg, L’obstruction locale d’Euler et le Théorème de Mac-Pherson. Astérisque, 82–83 (1981), 7–32.
    N.G. Grulha Jr., The Euler Obstruction and Bruce-Roberts’ Milnor Number. Quart. J. Math., 60(3) (2009), 291–302.
    D.T. Lê and B. Teissier, Variétés polaire locales et classes de Chern des variétés singulières. Ann. of Math., 114 (1981), 457–491.
    R.D. Mac-Pherson, Chern classes for singular algebraic varieties. Ann. of Math., 100 (1974), 423–432.
    J.J. Nuno-Ballesteros and R. Martins, Finitely determined singularities of ruled surfaces in ℝ3. Proceedings of the Cambridge Philosophical Society, 147 (2009), 701–733.
    J. Seade, M. Tibar and A. Verjovsky, Milnor Numbers and Euler obstruction. Bull. Braz. Math. Soc. (N.S), 36(2) (2005), 275–283.
    B. Teissier, Variétés polaires. II. Multiplicités polaires, sections planes et conditions de Whitney. Lect. Notes in Math., 961 Springer, Berlin (1982).