Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Production of a xylose-stimulated ß-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation (2012)

  • Authors:
  • USP affiliated authors: GUIMARÃES, LUIS HENRIQUE SOUZA - FFCLRP ; FURRIEL, ROSA DOS PRAZERES MELO - FFCLRP ; JORGE, JOAO ATILIO - FFCLRP
  • USP Schools: FFCLRP; FFCLRP; FFCLRP
  • DOI: 10.1007/s11274-012-1079-1
  • Subjects: ENZIMOLOGIA; FUNGOS TERMÓFILOS; ENZIMAS (PRODUÇÃO); BIOTECNOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11274-012-1079-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: World Journal of Microbiology and Biotechnology

    ISSN: 0959-3993

    Citescore - 2017: 2.14

    SJR - 2017: 0.604

    SNIP - 2017: 0.81


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2310616pcd 2310616 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MASUI, Douglas Chodi; ZIMBARDI, Ana Lucia Ribeiro Latorre; SOUZA, Flavio Henrique Moreira; et al. Production of a xylose-stimulated ß-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World Journal of Microbiology and Biotechnology, Dordrecht, v. 28, n. 8, p. 2689-2701, 2012. Disponível em: < http://dx.doi.org/10.1007/s11274-012-1079-1 > DOI: 10.1007/s11274-012-1079-1.
    • APA

      Masui, D. C., Zimbardi, A. L. R. L., Souza, F. H. M., Guimarães, L. H. S., Furriel, R. dos P. M., & Jorge, J. A. (2012). Production of a xylose-stimulated ß-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World Journal of Microbiology and Biotechnology, 28( 8), 2689-2701. doi:10.1007/s11274-012-1079-1
    • NLM

      Masui DC, Zimbardi ALRL, Souza FHM, Guimarães LHS, Furriel R dos PM, Jorge JA. Production of a xylose-stimulated ß-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation [Internet]. World Journal of Microbiology and Biotechnology. 2012 ; 28( 8): 2689-2701.Available from: http://dx.doi.org/10.1007/s11274-012-1079-1
    • Vancouver

      Masui DC, Zimbardi ALRL, Souza FHM, Guimarães LHS, Furriel R dos PM, Jorge JA. Production of a xylose-stimulated ß-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation [Internet]. World Journal of Microbiology and Biotechnology. 2012 ; 28( 8): 2689-2701.Available from: http://dx.doi.org/10.1007/s11274-012-1079-1

    Referências citadas na obra
    Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312. doi: 10.1016/j.biortech.2011.01.002
    Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:1–58. doi: 10.1080/07388550490465817
    Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidase: cloning, properties and applications. Crit Rev Biotechnol 22:375–407. doi: 10.1080/07388550290789568
    Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P (2010) A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng 107:943–952. doi: 10.1002/bit.22885
    Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103:2196–2204. doi: 10.1111/j.1365-2672.2007.03458.x
    Christopher L, Bissoon S, Singh S, Szendefy J, Szakacs G (2005) Bleach-enhancing abilities of Thermomyces lanuginosus xylanases produced by solid state fermentation. Process Biochem 40:3230–3235. doi: 10.1016/j.procbio.2005.03.027
    Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi: 10.1016/j.femsre.2004.06.005
    Da Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Braz J Microbiol 36:235–241. doi: 10.1590/S1517-83822005000300006
    Damaso MCT, Andrade CMMC, Pereira P (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–834. doi: 10.1385/ABAB:84-86:1-9:821
    Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072. doi: 10.1016/j.biortech.2011.03.032
    Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167. doi: 10.1016/j.indcrop.2011.04.001
    Fang TJ, Liao BC, Lee SC (2010) Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. New Biotechnol 27:25–32. doi: 10.1016/j.nbt.2009.09.008
    Filho EXF (1996) Purification and characterization of a β-glucosidase from solid-state cultures of Humicola grisea var. thermoidea. Can J Microbiol 42:1–5. doi: 10.1139/m96-001
    Gaffney M, Doyle S, Murphy R (2009) Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Biosci Biotechnol Biochem 73:2640–2644. doi: 10.1271/bbb.90493
    Gao J, Weng H, Xi Y, Zhu D, Han S (2008) Purification and characterization of a novel endo-β-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnol Lett 30:323–327. doi: 10.1007/s10529-007-9536-x
    Garg G, Mahajan R, Kaur A, Sharma J (2011) Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp. Biodegradation 22:1143–1154. doi: 10.1007/s10532-011-9470-4
    Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161. doi: 10.1016/S0960-8524(96)00094-6
    Harris D, Debolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262. doi: 10.1111/j.1467-7652.2009.00481.x
    Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186. doi: 10.1007/s00253-003-1504-3
    Jahromi MF, Liang JB, Rosfarizan M, Goh YM, Shokryazdan P, Ho YW (2011) Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr J Biotechnol 10:4428–4435
    Jatinder K, Chadha BS, Saini HS (2006a) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microbiol Biotechnol 22:15–22. doi: 10.1007/s11274-005-2821-8
    Jatinder K, Chadha BS, Saini HS (2006b) Regulation of cellulase production in two thermophilic fungi Melanocarpus sp. MTCC 3922 and Scytalidium thermophilum MTCC 4520. Enzyme Microb Technol 38:931–936. doi: 10.1016/J.ENZMICTEC.2005.08.036
    Jatinder K, Chadha BS, Saini HS (2006c) Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using response surface methodology. World J Microbiol Biotechnol 22:169–176. doi: 10.1007/s11274-005-9015-2
    Jiang Z, Cong Q, Yan Q, Kumar N, Dub X (2010) Characterisation of a thermostable xylanase from Chaetomium sp. and its application in chinese steamed bread. Food Chem 120:457–462. doi: 10.1016/j.foodchem.2009.10.038
    Joshi C, Khare SK (2011) Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour Technol 102:1722–1726. doi: 10.1016/j.biortech.2010.08.070
    Kalogeris E, Christakopoulos P, Kekos D, Macris BJ (1998) Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isozymes. J Biotechnol 60:155–163. doi: 10.1016/S0168-1656(97)00186-7
    Kamra P, Satyanarayana T (2004) Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–157. doi: 10.1385/ABAB:119:2:145
    Khucharoenphaisan K, Tokuyama S, Kitpreechavanich V (2010) Purification and characterization of a high-thermostable b-xylanase from newly isolated Thermomyces lanuginosusTHKU-49. Mycoscience 51:405–410. doi: 10.1007/s10267-010-0054-7
    Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407. doi: 10.1007/s11274-009-0190-4
    Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. doi: 10.1007/s10295-008-0327-8
    Leite RSR, Gomes E, da Silva R (2007) Characterization and comparison of termostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoacus aurantiacus. Process Biochem 42:1101–1106. doi: 10.1016/j.procbio.2007.05.003
    Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, Da Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol 43:391–395. doi: 10.1016/j.enzmictec.2008.07.006
    Lucena-Neto SA, Filho EXF (2004) Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Braz J Microbiol 35:86–90. doi: 10.1590/S1517-83822004000100014
    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002
    Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488. doi: 10.1128/MMBR.64.3.461-488.2000
    McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428. doi: 10.1021/ac60147a030
    Narang S, Sahai V, Bisaria VS (2001) Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology. J Biosci Bioeng 91:425–427. doi: 10.1016/S1389-1723(01)80164-X
    Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48:53–62. doi: 10.1007/s12275-009-0159-x
    Peralta RM, Terenzi HF, Jorge JA (1990) β-D-Glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme. Biochim Biophys Acta 1033:243–249. doi: 10.1016/0304-4165(90)90127-I
    Peralta RM, Kadowaki MK, Terenzi HF, Jorge JA (1997) A highly thermostable β-glucosidase activity from the thermophilic fungus Humicola grisea var. thermoidea: purification and biochemical characterization. FEMS Microbiol Lett 146:291–295. doi: 10.1111/j.1574-6968.1997.tb10207.x
    Qing Q, Wyman CE (2011) Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol 102:1359–1366. doi: 10.1016/j.biortech.2010.09.001
    Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630. doi: 10.1016/j.biortech.2010.06.137
    Rajoka MI, Akhtar MW, Hanif A, Khalid AL (2006) Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22:991–998. doi: 10.1007/s11274-006-9146-0
    Read SM, Northcote DH (1981) Minimization of variation in the response to different protein of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116:53–64. doi: 10.1016/0003-2697(81)90321-3
    Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614
    Romdhane IBB, Maaleja-Chouri I, Belghith H (2010) Improvement of highly thermostable xylanases production by Talaromyces thermophilus for the agro-industrials residue hydrolysis. Appl Biochem Biotechnol 162:1635–1646. doi: 10.1007/s12010-010-8945-9
    Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS (2011) Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 163:577–591. doi: 10.1007/s12010-010-9064-3
    Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16. doi: 10.1016/S0168-6445(03)00018-4
    Singh S, Tyagi CH, Dutt D, Upadhyaya JS (2009) Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. New Biotechnol 26:165–170. doi: 10.1016/j.nbt.2009.09.004
    Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549. doi: 10.1016/S0168-6445(03)00018-4
    Soni R, Nazir A, Chadha BS, Saini HS (2008) Novel sources of fungal cellulases for efficient deinking of composite paper waste. Bioresources 3:234–246
    Soni R, Nazir A, Chadha BS (2010a) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crops Prod 31:277–283. doi: 10.1016/j.indcrop.2009.11.007
    Soni SK, Batra N, Bansal N, Soni R (2010b) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp. S4B2F. Bioresources 5:741–758
    Sonia KG, Chadha BS, Badhan AK, Saini HS, Bhat MK (2008) Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World J Microbiol Biotechnol 24:599–604. doi: 10.1007/s11274-007-9512-6
    Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278. doi: 10.1016/j.procbio.2009.09.018
    Takó M, Tóth A, Nagy LG, Krisch J, Vágvolgyi C, Papp T (2010) A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei. Antonie Van Leeuwenhoek 97:1–10. doi: 10.1007/s10482-009-9382-z
    Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 38:1327–1340. doi: 10.1016/S0032-9592(02)00331-X
    Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2011) Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol 89:1761–1771. doi: 10.1007/s00253-010-2963-y
    Vafiadi C, Christakopoulos P, Topakas E (2010) Purification, characterization and mass spectrometric identification of two thermophilic xylanases from Sporotrichum thermophile. Process Biochem 45:419–424. doi: 10.1016/j.procbio.2009.10.009
    Xu H, Xiong AS, Zhao W, Tian YS, Peng RH, Chen JM, Yao QH (2011) Characterization of a glucose-, xylose-, sucrose-, and d-galactose-stimulated β-glucosidase from the alkalophilic bacterium Bacillus halodurans C-125. Curr Microbiol 62:833–839. doi: 10.1007/s00284-010-9766-3
    Yang S, Jiang Z, Yan Q, Zhu H (2008) Characterization of a thermostable extracellular β-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. J Agric Food Chem 56:602–608. doi: 10.1021/jf072279+
    Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA (2004) β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143. doi: 10.1016/j.femsle.2004.09.021