Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

An extension of Mercer's theorem via Pontryagin Spaces (2012)

  • Authors:
  • USP affiliated authors: MENEGATTO, VALDIR ANTONIO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00020-012-2008-2
  • Subjects: ANÁLISE FUNCIONAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1007/s00020-012-2008-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00020-012-2008-2 (Fonte: Unpaywall API)

    Título do periódico: Integral Equations and Operator Theory

    ISSN: 0378-620X,1420-8989



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Integral Equations and Operator Theory

    ISSN: 0378-620X

    Citescore - 2017: 0.77

    SJR - 2017: 1.076

    SNIP - 2017: 1.072


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2314810-10PROD-2314810
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MENEGATTO, Valdir Antônio; OLIVEIRA, C. P. An extension of Mercer's theorem via Pontryagin Spaces. Mathematische Nachrichten, Basel, Birkhäuser Verlag, v. no 2012, n. 3, p. 363-375, 2012. Disponível em: < http://dx.doi.org/10.1007/s00020-012-2008-2 > DOI: 10.1007/s00020-012-2008-2.
    • APA

      Menegatto, V. A., & Oliveira, C. P. (2012). An extension of Mercer's theorem via Pontryagin Spaces. Mathematische Nachrichten, no 2012( 3), 363-375. doi:10.1007/s00020-012-2008-2
    • NLM

      Menegatto VA, Oliveira CP. An extension of Mercer's theorem via Pontryagin Spaces [Internet]. Mathematische Nachrichten. 2012 ; no 2012( 3): 363-375.Available from: http://dx.doi.org/10.1007/s00020-012-2008-2
    • Vancouver

      Menegatto VA, Oliveira CP. An extension of Mercer's theorem via Pontryagin Spaces [Internet]. Mathematische Nachrichten. 2012 ; no 2012( 3): 363-375.Available from: http://dx.doi.org/10.1007/s00020-012-2008-2

    Referências citadas na obra
    Ando, T.: Linear operators on Kreǐn spaces. Hokkaido University, Research Institute of Applied Electricity Division of Applied Mathematics, Sapporo (1979)
    Azizov T.Y.: Dissipative operators in a Hilbert space with indefinite metric. (Russian) Izv Akad. Nauk SSSR Ser. Mat. 37, 639–662 (1973)
    Azizov, T.Y., Iokhvidov I.S.: Linear operators in spaces with an indefinite metric. Translated from the Russian by E.R. Dawson. Pure and Applied Mathematics (New York). Wiley, Chichester (1989)
    Bognár J.: Indefinite inner product spaces Ergebnisse der Mathematik und ihrer Grenzgebiete Band 78. Springer, New York-Heidelberg (1974)
    Conway, J.B.: A Course in Operator Theory: Raduate Studies in Mathematics, vol. 21. American Mathematical Society, Providence (2000)
    Dostanić M.: Generalization of the Mercer theorem. Publications de L’institut Mathématique Nouvelle série, tome 54(68), 63–70 (1993)
    Ferreira J.C., Menegatto V.A.: Eigenvalues of integral operators defined by smooth positive definite kernels. Integral Equ. Oper. Theory 64(1), 61–81 (2009)
    Ferreira J.C., Menegatto V.A., Oliveira C.P.: On the nuclearity of integral operators. Positivity 13(3), 519–541 (2009)
    Iokhvidov, I.S., ‘Ektov, Yu.S.: Integral J-nonnegative operators and weighted integral equations. (Russian. English summary) Dokl. Akad. Nauk Ukrain. SSR Ser. A 6:15–19, 108 (1981)
    Kato T.: Pertubation theory for linear operator. Reprint of the 1980 Edition. Springer, Berlin, New York (1980)
    König H.: Eigenvalue Distribution Of Compact Operators Operator Theory: Advances and Applications, vol. 16. Birkhäuser Verlag, Basel (1986)
    Kreǐn M.: Sur les équations intégrales chargées. C.R. Acad. Sci. Paris 201, 24–26 (1935)
    Kreǐn M.G.: On “loaded” integral equations the distribution functions of which are not monotonic. (Russian) Memorial volume dedicated to D.A. Grave, pp. 88–103. GITTL, Moscow (1940)
    Lax P.D.: Functional Analysis Pure and Applied Mathematics. Wiley, New York (2002)
    Mercer J.: Functions of positive and negative type and their connection with the theory of integral equations. Phil. Trans. Royal Soc. A 209, 415–446 (1909)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2019