Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Morphological homogeneity of neurons: searching for outlier neuronal cells (2012)

  • Authors:
  • USP affiliated authors: COSTA, LUCIANO DA FONTOURA - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s12021-012-9150-5
  • Subjects: NEUROCIÊNCIAS; MORFOLOGIA ANIMAL; NEUROLOGIA; BIOINFORMÁTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12021-012-9150-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12021-012-9150-5 (Fonte: Unpaywall API)

    Título do periódico: Neuroinformatics

    ISSN: 1539-2791,1559-0089



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Neuroinformatics

    ISSN: 1539-2791

    Citescore - 2017: 3.32

    SJR - 2017: 1.586

    SNIP - 2017: 1.581


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89020228PROD020228
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ZAWADZKI, Krissia; FEENDERS, Christoph; VIANA, Matheus P.; KAISER, Marcus; COSTA, Luciano da Fontoura. Morphological homogeneity of neurons: searching for outlier neuronal cells. Neuroinformatics, Totowa, Humana Press, v. 10, n. 4, p. 379-389, 2012. Disponível em: < http://dx.doi.org/10.1007/s12021-012-9150-5 > DOI: 10.1007/s12021-012-9150-5.
    • APA

      Zawadzki, K., Feenders, C., Viana, M. P., Kaiser, M., & Costa, L. da F. (2012). Morphological homogeneity of neurons: searching for outlier neuronal cells. Neuroinformatics, 10( 4), 379-389. doi:10.1007/s12021-012-9150-5
    • NLM

      Zawadzki K, Feenders C, Viana MP, Kaiser M, Costa L da F. Morphological homogeneity of neurons: searching for outlier neuronal cells [Internet]. Neuroinformatics. 2012 ; 10( 4): 379-389.Available from: http://dx.doi.org/10.1007/s12021-012-9150-5
    • Vancouver

      Zawadzki K, Feenders C, Viana MP, Kaiser M, Costa L da F. Morphological homogeneity of neurons: searching for outlier neuronal cells [Internet]. Neuroinformatics. 2012 ; 10( 4): 379-389.Available from: http://dx.doi.org/10.1007/s12021-012-9150-5

    Referências citadas na obra
    Ascoli, G. A. (Ed.) (2002). Computational neuroanatomy: Principles and methods. Totawa, NJ: Humana Press.
    Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247.
    Binzegger, T., Douglas, R. J., & Martin, K. A. (2005). Axons in cat visual cortex are topologically self-similar. Cereb Cortex, 15(2), 152–165.
    Botev, Z. I., Grotowski, J. F., & Krose, D. P. (2010). Kernel density estimation via diffusion. The Annals of Statistics, 38(5), 2916.
    Cajal, S. R. (1989). Recollections of my life. Massachussetts: MIT Press.
    Cook, J. E. (1998). Getting to grips with neuronal diversity: What is a neuronal type? In L. Chalupa & B. Finlay (Eds.), Development and organization of the retina (pp. 91). New York: Plenum.
    Costa, L. da F., Manoel, E. T. M., Faucereau, F., Chelly, J., van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network: Computation in Neural Systems, 13(3), 283.
    Costa, L. da F., Rodrigues, F. A., Hilgetag, C. C., & Kaiser, M. (2009). Beyond the average: Detecting global singular nodes from local features in complex networks. Europhysics Letters, 87, 18008.
    Costa, L. da F. & Velte, T. J. (1999). Automatic characterization and classification of ganglion cells from salamander retina. Journal of Comparative Neurology, 404, 33.
    Costa, L. da F., Zawadzki, K., Miazaki, M., Viana, M. P., & Taraskin, S. N. (2010). Unveiling the neuromorphological space. Frontiers in Neuroscience, 4, 1.
    Donohue, D. E., & Ascoli, G. A. (2010). Automated reconstruction of neuronal morphology: An overview. Brain Research Review, 67,(1–2), 165.
    Eadie, W. T., Drijard, D., James, F. E., Roos, M., & Sadoulet, B. (1971). Statistical methods in experimental physics. North-Holland, Amsterdam.
    Echtermeyer, C., Costa, L. da F., Rodrigues, F. A., & Kaiser, M. (2011). Automatic network fingerprinting through single-node motifs. PLoS ONE, 6(1), 9.
    Echtermeyer, C., Han, C. E., Rotarska-Jagiela, A., Mohr, H., Uhlhass, P., & Kaiser, M. (2011). Integrating temporal and spatial scales: Human structural network motifs across age and region of interest size. Frontiers in Neuroinformatics, 5, 14.
    Gleeson, P., Steuber, V., & Silver, R. A. (2007). Neuroconstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219.
    Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008). Neuromorpho.org implementation of digital neuroscience: Dense coverage and integration with the NIF. Journal of Neuroinformatics, 6(3), 241–252.
    Härdle, W. K., & Simar, L. (2007). Applied multivariate statistical analysis (2nd ed.). Springer.
    Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology, 7(95), 806.
    Kaiser, M., Hilgetag, C. C., & van Ooyen, A. (2009). A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cerebral Cortex, 19(12), 3001.
    Loewi, O. (1921). Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Archiv, 189, 239.
    Loewi, O. (1955). Salute to Henry Hallet Dale. The British Medical Journal, 1(4926), 1356.
    Lu, J., Fiala, F. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.
    McGhee, G. R. (2006). The geometry of evolution: Adaptive landscapes and theoretical morphospaces. Cambridge University Press.
    Montague, P. R., & Friedlander, M. J. (1991). Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. Journal of Neuroscience, 11, 1440.
    Poznanski, R. R. (1992). Modelling the electronic structure of starburst amacrine cells in the rabbit retina: Functional interpretation of dendritic morphology. Bulletin of Mathematical Biology, 54, 905.
    Schierwagen, A. (2008). Neuronal morphology: Shape characteristics and model. Neurophysiology, 40(4), 310.
    Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-measure: A web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3, 866.
    Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87, 387.
    Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418.
    Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinformatics, 5(3), 189.
    Stepanyants, A., & Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neuroscience, 28(7), 387.
    Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34(2), 275.
    Toris, C. B., Eiesland, J. L., & Miller, R. F. (1995). Morphology of ganglion cells in the neotenous tiger salamander retina. Journal of Comparative Neurology, 352(4), 535.
    Wen, Q., & Chklovskii, D. B. (2008). A cost-benefit analysis of neuronal morphology. Journal of Neurophysiology, 99, 497.