Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA (2011)

  • Authors:
  • USP affiliated authors: LAMBAIS, MARCIO RODRIGUES - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s12011-010-8899-3
  • Subjects: BIOTRANSFORMAÇÃO; COBRE (CONTAMINAÇÃO); PSEUDOMONAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12011-010-8899-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Biological Trace Element Research

    ISSN: 0163-4984

    Citescore - 2017: 2.34

    SJR - 2017: 0.719

    SNIP - 2017: 0.892


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANDREAZZA, Robson; OKEKE, Benedict C; PIENIZ, Simone; et al. Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA. Biological Trace Element Research, Totowa, v. 143, n. 2, p. 1182-1192, 2011. Disponível em: < http://link.springer.com/article/10.1007%2Fs12011-010-8899-3 > DOI: 10.1007/s12011-010-8899-3.
    • APA

      Andreazza, R., Okeke, B. C., Pieniz, S., Brandelli, A., Lambais, M. R., & Camargo, F. A. O. (2011). Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA. Biological Trace Element Research, 143( 2), 1182-1192. doi:10.1007/s12011-010-8899-3
    • NLM

      Andreazza R, Okeke BC, Pieniz S, Brandelli A, Lambais MR, Camargo FAO. Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA [Internet]. Biological Trace Element Research. 2011 ; 143( 2): 1182-1192.Available from: http://link.springer.com/article/10.1007%2Fs12011-010-8899-3
    • Vancouver

      Andreazza R, Okeke BC, Pieniz S, Brandelli A, Lambais MR, Camargo FAO. Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA [Internet]. Biological Trace Element Research. 2011 ; 143( 2): 1182-1192.Available from: http://link.springer.com/article/10.1007%2Fs12011-010-8899-3

    Referências citadas na obra
    Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications (ed), 4th edn. Benjamin/Cummings Science Publishing, New York
    Wakatsuki T, Hayakawa S, Hayakawa T et al (1991) Solubilization and properties of copper reducing enzyme systems from the yeast cell surface in Debaryomyces hansenii. J Ferment Bioeng 72:79–86
    Wakatsuki T, Hayakawa S, Hayakawa T et al (1991) Purification and some properties of copper reductase from cell surface of Debaryomyces hansenii. J Ferment Bioeng 72:158–161
    Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Tech 38:291–316
    Odermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Bioph Res Co 202:44–48
    Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241
    Lu ZH, Solioz M (2002) Bacterial copper transport. Adv Protein Chem 60:93–121
    Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. Microbiol Rev 27:183–195
    Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Plant 223:1115–1122
    Saitoh Y, Izumitsu K, Tanaka C (2009) Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. Mycol Res 113:737–745
    Camargo FA, Bento FM, Okeke BC et al (2004) Hexavalent chromium reduction by an Actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194
    Okeke BC, Laymon J, Crenshaw S et al (2008) Environment and kinetic parameters for Cr(VI) bioreduction by a acterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 123:229–241
    Okeke BC (2008) Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 35:1571–1579
    Andreazza R, Pieniz S, Wolf L et al (2010) Characterization of copper biosorption and bioreduction by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci Total Environ 408:1501–1507
    Smith CF, McCurdy WH Jr (1952) 2, 9-Dimethyl-1, 10-phenanthroline—new specific in spectrophotometric determination of copper. Anal Chem 24:371–373
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dyes binding. Anal Biochem 72:248–254
    Herman DC, Frankenberger WT Jr (1999) Bacterial reduction of perchlorate and nitrate in water. J Environ Qual 28:1018–1024
    Focht DD (1994) Microbiological procedures for biodegradation research. In: Weaver RW et al (eds) Methods of soil analysis. Part 2. SSSA Book Ser. 5. SSSA, Madison
    Cooksey DA, Azad TTR (1992) Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic Pseudomonas. In: Cervantes C, Gutierrez-Corona FG (1994) Copper resistance mechanisms in bacteria and fungi. Microb Rev 14:121–138
    Voss M, Thomas RWSP (2001) Sorção de cobre e manganês por bactérias rizosféricas do trigo. Ciên Rural 31:947–951
    Chen XC, Wang YP, Lin Q et al (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloid Surf B 46:101–107
    Chen XC, Wu WX, Shi JY et al (2007) Adsorption of copper and zinc on Pseudomonas putida CZ1: particle concentration effect and adsorption reversibility. Colloid Surf B 54:46–52
    Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Biores Technol 97:1237–1242
    Andreazza R, Okeke BC, Pieniz S et al (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81:1149–1154
    Scopes RK (1994) Protein purification: principles and practices, 3rd edn. Springer-Verlag, New York
    Briand L, Chobert JM, Tauzin J et al (1997) Regulation of trypsin activity by Cu2+ chelation of the substrate binding site. Protein Eng 10:551–560
    Komori H, Miyazaki K, Higuchi Y (2009) X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett 583:1189–1195
    Wunderli-Ye H, Solioz M (1999) Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and copper(II). Biochem Bioph Res Co 259:443–449
    Steele M, Marcone M, Gyles C et al (2006) Enzymatic activity of Campylobacter jejuni hippurate hydrolase. Protein Eng Des Sel 19:17–25