Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Bose–Einstein Condensation of Magnons in NiCl2-4SC(NH2)2 (2012)

  • Authors:
  • USP affiliated authors: PADUAN FILHO, ARMANDO - IF
  • USP Schools: IF
  • DOI: 10.1007/s13538-012-0079-9
  • Subjects: CONDENSADO DE BOSE-EINSTEIN; MATERIAIS MAGNÉTICOS
  • Keywords: Quantized spin models; Magnetic phase boundaries; Macroscopic quantum phenomena in magnetic systems; Magnetic materials; Bose–Einstein condensation; Magnons
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s13538-012-0079-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Brazilian Journal of Physics

    ISSN: 0103-9733

    Citescore - 2017: 0.95

    SJR - 2017: 0.276

    SNIP - 2017: 0.6


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PADUAN-FILHO, A. Bose–Einstein Condensation of Magnons in NiCl2-4SC(NH2)2. Brazilian Journal of Physics, São Paulo, SBF, v. 42, n. 3-4, p. 292-305, 2012. DOI: 10.1007/s13538-012-0079-9.
    • APA

      Paduan-Filho, A. (2012). Bose–Einstein Condensation of Magnons in NiCl2-4SC(NH2)2. Brazilian Journal of Physics, 42( 3-4), 292-305. doi:10.1007/s13538-012-0079-9
    • NLM

      Paduan-Filho A. Bose–Einstein Condensation of Magnons in NiCl2-4SC(NH2)2. Brazilian Journal of Physics. 2012 ; 42( 3-4): 292-305.
    • Vancouver

      Paduan-Filho A. Bose–Einstein Condensation of Magnons in NiCl2-4SC(NH2)2. Brazilian Journal of Physics. 2012 ; 42( 3-4): 292-305.

    Referências citadas na obra
    H. Shi, A. Griffin, Phys. Rep. 304, 1 (1998)
    T. Giamarchi, C. Ruegg, O. Tchernyshyov, Nat. Phys. 4, 198 (2008)
    M.B. Stone, C. Broholm, D.H. Reich, P. Schiffer, O. Tchernyshyov, P. Voderwisch, N. Harrinon, New J. Phys. 9, 31 (2007)
    J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)
    G. Baym, J.P. Blaizot, M. Holzmann, F. Laloe, D. Vautherin, Eur. J. Phys. B. 24, 107 (2001)
    T. Giamarchi, A.M. Tsvelik, Phys. Rev. B 59, 11398 (1999)
    T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)
    I. Affleck, Phys. Rev. B 43, 3215 (1991)
    A.I. Bugrij, V.M. Loktev, J. Low Temp. Phys. 33, 37 (2007)
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)
    M.H. Anserson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)
    N. Kawashima, J. Phys. Soc. Jpn. 74(Supp.), 145 (2005)
    S.E. Sebastian, N. Harrison, C.D. Batista, L. Balicas, M. Jaime, P.A. Sharma, N. Kawashima, I.R. Fisher, Nature 441, 617 (2006)
    V.S. Zapf, D. Zocco, B.R. Hansen, M. Jaime, N. Harrison, C.D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, A. Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006)
    E. Orignac, R. Citro, T. Giamarchi, Phys. Rev. B 75, 140403(R) (2007)
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanka, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)
    J. Ling, J.P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993)
    S.M. Rezende, Phys. Rev. B 79, 17441 (2009)
    V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin, Phys. Rev. Lett. 100, 047205 (2008)
    F. Yamada, T. Ono, H. Tanaka, G. Misguishi, M. Oshikawa, T. Sakakibara, J. Phys. Soc. Jpn. 77, 013701 (2008)
    A. Paduan-Filho, K.A. Al-Hassanieh, P. Sengupta, M. Jaime, Phys. Rev. Lett. 102, 077204 (2009)
    A. Paduan-Filho, R.D. Chirico, K.O. Joung, R.L. Carlin, J. Chem. Phys. 74, 4103 (1981)
    A. Paduan-Filho, X. Gratens, N.F. Oliveira Jr., J. Appl. Phys. 95, 7537 (2004)
    H. Tanaka, F. Yamada, T. Ono, T. Sakakibara, Y. Uwatoko, A. Oosawa, K. Kakurai, K. Goto, J. Magn. Magn. Mater. 310, 1343 (2007)
    G. Misguich, M. Oshikawa, J. Phys. Soc. Jpn. 73, 3429 (2004)
    H. Enomoto, M. Okumura, Y. Yamanaka, Ann. Phys. 321, 1892 (2006)
    J. Sirker, A. Weisse, O.P. Sushikov, J. Phys. Soc. Jpn. 74(Suppl.), 129 (2005)
    M. Matsumoto, B. Normand, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 89, 077203 (2002)
    J. Sirker, A. Weisse, O.P. Sushkov, Europhys. Lett. 68, 275 (2004)
    S.R.A. Salinas, Introduction to Statistical Physics, chap. 10 (Springer, New York, 2001)
    R.K. Pathria, Statistical Mechanics, 2nd edn., chap. 7 (Butterworth-Heinemann, Oxford, 2001)
    A. Paduan-Filho, X. Gratens, N.F. Oliveira Jr., Phys. Rev. B. 69, 020405(R) (2004)
    Y. Kohama, A.V. Sologubenko, N.R. Dilley, V.S. Zapf, M. Jaime, J.A. Mydosh, A. Paduan-Filho, K.A. Al-Hassanieh, P. Sengupta, S. Gangadharaiah, A.L. Chernyshev, C.D. Batista, Phys. Rev. Lett. 106, 037203 (2011)
    D. Reyes, A. Paduan-Filho, M.A. Continentino, Phys. Rev. B 77, 052405 (2005)
    S.A. Zvyagin, J. Wosnitza, A.K. Kolezhuk, V.S. Zapf, M. Jaime, A. Paduan-Filho, V.N. Glazkov, S.S. Sosin, A.I. Smirnov, Phys. Rev. B 77, 092413 (2008)
    S. Cox, R.D. McDonald, M. Armanious, P. Sengusta, A. Paduan-Filho, Phys. Rev. Lett. 101, 087602 (2008)
    S.A. Zvyagin, J. Wosnitza, C.D. Batista, M. Tsukamoto, N. Kawashima, J. Krzystek, V.S. Zapf, M. Jaime, N.F. Oliveira Jr., A. Paduan-Filho, Phys. Rev. Lett. 98, 047205 (2007)
    O. Chiatti, A. Sytcheva, J. Wosnitza, S. Zherlitsyn, A.A. Svyagin, V.S. Zapf, M. Jaime, A. Paduan-Filho, Phys. Rev. B 78, 094406 (2008)
    A. Paduan-Filho, K.A. Al-Hassanieh, P. Sengupta, V.S. Zapf, M. Jaime, A. Lacerda, M. Kenzelmann, J. Appl. Phys. 105, 07D501 (2009)
    V.S. Zapf, V.F. Correa, P. Sengupta, C.D. Batista, M. Tsukamoto, N. Kawashima, P. Egan, C. Pantea, A. Migliori, J.B. Betts, M. Jaime, A. Paduan-Filho, Phys. Rev. B 77, 020404 (2008)
    L. Yin, J.S. Xia, V.S. Zapf, N.S. Sullivan, A. Paduan-Filho, Phys. Rev. Lett. 101, 187205 (2008)
    T. Roscilde, S. Haas, Phys. Rev. Lett. 99, 047205 (2007)
    Y. Rong et al., arXiv:1109.4403v2 (2011)
    The boson mass was calculated by M. Kenzelmann from the neutron-scattering data in Ref. [14]. Since at low temperature only the bottom of the magnon band is thermally excited around one minimum, m can be evaluated from the curvature of the band structure around this point. The dispersion is given by E = Δ + c 2 k 2, where Δ is the excitation gap c describes the increase in the dispersion as a function of the wave-vector k in lattice units. Writing $E_{c}=p^{2}/(2m)$ , the obtained mass is $m=(1/2)({2\pi\hbar}/(a/c))^{2}=3.7 \times 10^{-25}$ g
    A.V. Sizanov, A.V. Syromyatnikov, Phys. Rev. B 84, 054445 (2011)
    H.T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)
    K.K. Ng, T.K. Lee, Phys. Rev. B 73, 014433 (2006)
    C. Psaroudaki, S.A. Zvyagin, J. Krzystek, A. Paduan-Filho, X. Zotos, N. Papanicolaou, Phys. Rev. B 85, 104429 (2012)