Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae) (2012)

  • Authors:
  • USP affiliated authors: GRANT, TARAN - IB
  • USP Schools: IB
  • DOI: 10.1007/s00049-012-0107-9
  • Subjects: BUFONIDAE; ANURA; DEFESA ANIMAL; ALCALOIDES; CROMATOGRAFIA
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Chemoecology
    • ISSN: 0937-7409
    • Volume/Número/Paginação/Ano: v. 22, n. 3, p. 169-178, Sept. 2012
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00049-012-0107-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00049-012-0107-9 (Fonte: Unpaywall API)

    Título do periódico: Chemoecology

    ISSN: 0937-7409,1423-0445



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Chemoecology

    ISSN: 0937-7409

    Citescore - 2017: 1.89

    SJR - 2017: 0.764

    SNIP - 2017: 0.921


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GRANT, Taran; COLOMBO, Patrick; VERRASTRO, Laura; SAPORITO, Ralph A. The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology, Basel, v. 22, n. 3, p. 169-178, 2012. Disponível em: < http://dx.doi.org/10.1007/s00049-012-0107-9 > DOI: 10.1007/s00049-012-0107-9.
    • APA

      Grant, T., Colombo, P., Verrastro, L., & Saporito, R. A. (2012). The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology, 22( 3), 169-178. doi:10.1007/s00049-012-0107-9
    • NLM

      Grant T, Colombo P, Verrastro L, Saporito RA. The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae) [Internet]. Chemoecology. 2012 ; 22( 3): 169-178.Available from: http://dx.doi.org/10.1007/s00049-012-0107-9
    • Vancouver

      Grant T, Colombo P, Verrastro L, Saporito RA. The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae) [Internet]. Chemoecology. 2012 ; 22( 3): 169-178.Available from: http://dx.doi.org/10.1007/s00049-012-0107-9

    Referências citadas na obra
    Brodie ED Jr, Formanowicz DR Jr, Brodie ED III (1991) Predator avoidance and antipredator mechanisms: distinct pathways to survival. Ethol Ecol Evol 3:73–77
    Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212. doi: 10.1007/s00441-010-1014-4
    Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Nat Acad Sci USA 92:9–13
    Daly JW, Myers CW, Warnick JE, Albuquerque EX (1980) Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science 208:1383–1385
    Daly JW, Highet RJ, Myers CW (1984) Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). Toxicon 22:905–919. doi: 10.1016/0041-0101(84)90182-X
    Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr (1994) An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–663. doi: 10.1016/0041-0101(94)90335-2
    Daly JW, Garraffo HM, Spande TF (1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: Chemical and biological perspectives Volume 13. Pergamon, New York, pp 1–161
    Daly JW, Kaneko T, Wilham JM, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Nat Acad Sci USA 99:13996–14001. doi: 10.1073/pnas.222551599
    Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575. doi: 10.1021/np0580560
    Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil R, Silva G, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): Temporal and geographic determinants for two Argentinian species. J Chem Ecol 33:871–887. doi: 10.1007/s10886-007-9261-x
    Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, Baldo JD, Faivovich J (2008) Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52:858–870. doi: 10.1016/j.toxicon.2008.08.016
    Dumbacher JP, Menon GK, Daly JW (2009) Skin as a toxin storage organ in the endemic New Guinean genus Pitohui. Auk 126:520–530. doi: 10.1525/auk.2009.08230
    Feldman CR, Brodie ED Jr, Brodie ED III, Pfrender ME (2009) The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey. Proc Nat Acad Sci USA 106:13415–13420. doi: 10.1073/pnas.0901224106
    Fernández K (1926) Sobre la biología y reproducción de algunos batracios argentinos (segunda parte). Bol Acad Nac Cienc Córdoba 29:271–320
    Flier J, Edwards MW, Daly JW, Myers CW (1980) Widespread occurrence in frogs and toads of skin compounds interacting with the Ouabain site of Na+, K+-ATPase. Science 208:503–505
    Frost DR (2011) Amphibian species of the world: an online reference. Version 5.5 (31 January 2011). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.php . American Museum of Natural History, New York
    Garraffo HM, Spande TF, Daly JW, Baldessari A, Gros EG (1993) Alkaloids from bufonid toads (Melanophryniscus): decahydroquinolines, pumiliotoxins and homopumiliotoxins, indolizidines, pyrrolizidines, and quinolizidines. J Nat Prod 56:357–373. doi: 10.1021/np50093a008
    Geffeney SL, Ruben PC (2006) The structural basis and functional consequences of interactions between tetrodotoxin and voltage-gated sodium channels. Mar Drugs 4:143–156. doi: 10.3390/md403143
    Geffeney SL, Fujimoto E, Brodie ED III, Brodie ED Jr, Ruben PC (2005) Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction. Nature 434:759–763. doi: 10.1038/nature03392
    Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel WE, Wheeler WC (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Anura: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist 299:1–262. URI:hdl.handle.net/2246/5803
    Hanifin CT, Brodie ED III, Brodie ED Jr (2003) Tetrodotoxin levels in eggs of the rough-skinned newt, Taricha granulosa, are correlated with female toxicity. J Chem Ecol 29:1729–1739. doi: 10.1023/A:1024885824823
    Mebs D, Pogoda W (2005) Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon 45:603–606
    Mebs D, Pogoda W, Maneyro R, Kwet A (2005) Studies on the poisonous skin secretion of individual red bellied toads, Melanophryniscus montevidensis (Anura, Bufonidae), from Uruguay. Toxicon 46:641–650. doi: 10.1016/j.toxicon.2005.07.004
    Mebs D, Maneyro R, Pogoda W (2007) Further studies on pumiliotoxin 251D and hydroquinone content of the skin secretion of Melanophryniscus species (Anura, Bufonidae) from Uruguay. Toxicon 50:166–169. doi: 10.1016/j.toxicon.2007.02.017
    Mebs D, Arakawa O, Yotsu-Yamashita M (2010) Tissue distribution of tetrodotoxin in the red-spotted newt Notophthalmus viridescens. Toxicon 55:1353–1357. doi: 10.1016/j.toxicon.2010.02.009
    Myers CW, Daly JW, Malkin B (1978) A dangerously toxic new frog (Phyllobates) used by Emberá indians of western Colombia, with discussion of blowgun fabrication and dart poisoning. Bull Am Mus Nat Hist 161:307–366. URI://hdl.handle.net/2246/1286
    Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220–242. doi: 10.3390/md20080011
    Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]
    Raspotnig G, Norton RA, Heethoff M (2011) Oribatid mites and skin alkaloids in poison frogs oribatid mites and skin alkaloids in poison frogs. Biol Lett 7:555–556. doi: 10.1098/rsbl.2010.1113
    Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. BBA Biomemb 1788:1570–1581. doi: 10.1016/j.bbamem.2008.11.002
    Rodríguez A, Poth D, Schulz S, Vences M (2010) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418. doi: 10.1098/rsbl.2010.0844
    Santos RR, Grant T (2011) Diel pattern of migration in a poisonous toad from Brazil and the evolution of chemical defenses in diurnal amphibians. Evol Ecol 25:249–258. doi: 10.1007/s10682-010-9407-0
    Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the ‘dietary hypothesis’. Heterocycles 79:277–297. doi: 10.1002/chin.200934267
    Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321. doi: 10.1021/np900702d
    Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2011) A review of chemical ecology in poison frogs. Chemoecology. doi: 10.1007/s00049-011-0088-0
    Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A Mol Integr Physiol 111:1–29. doi: 10.1016/0300-9629(95)98515-I
    Williams BL, Brodie ED Jr, Brodie ED III (2004) A resistant predator and its toxic prey: persistence of newt toxin leads to poisonous (not venomous) snakes. J Chem Ecol 30:1901–1919. doi: 10.1023/B:JOEC.0000045585.77875.09