Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Inflation of correlation in the pursuit of drug-likeness (2013)

  • Authors:
  • USP affiliated authors: MONTANARI, CARLOS ALBERTO - IQSC
  • USP Schools: IQSC
  • DOI: 10.1007/s10822-012-9631-5
  • Subjects: QUÍMICA MÉDICA; ESTRUTURA QUÍMICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10822-012-9631-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10822-012-9631-5 (Fonte: Unpaywall API)

    Título do periódico: Journal of Computer-Aided Molecular Design

    ISSN: 0920-654X,1573-4951



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Computer-Aided Molecular Design

    ISSN: 0920-654X

    Citescore - 2017: 2.7

    SJR - 2017: 0.941

    SNIP - 2017: 0.827


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IQSC2338075-10P14266
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KENNY, Peter W; MONTANARI, Carlos Alberto. Inflation of correlation in the pursuit of drug-likeness. Journal of Computer-Aided Molecular Design, Oxford, Springer, v. 27, p. 1-13, 2013. Disponível em: < http://dx.doi.org/10.1007/s10822-012-9631-5 > DOI: 10.1007/s10822-012-9631-5.
    • APA

      Kenny, P. W., & Montanari, C. A. (2013). Inflation of correlation in the pursuit of drug-likeness. Journal of Computer-Aided Molecular Design, 27, 1-13. doi:10.1007/s10822-012-9631-5
    • NLM

      Kenny PW, Montanari CA. Inflation of correlation in the pursuit of drug-likeness [Internet]. Journal of Computer-Aided Molecular Design. 2013 ; 27 1-13.Available from: http://dx.doi.org/10.1007/s10822-012-9631-5
    • Vancouver

      Kenny PW, Montanari CA. Inflation of correlation in the pursuit of drug-likeness [Internet]. Journal of Computer-Aided Molecular Design. 2013 ; 27 1-13.Available from: http://dx.doi.org/10.1007/s10822-012-9631-5

    Referências citadas na obra
    Ziliak ST, McCloskey DN (2008) The cult of statistical significance: How the standard error costs us jobs, justice and lives. University of Michigan Press, Ann Arbor
    Kelley K, Preacher KJ (2012) On effect size. Psychol Methods 17:137–152
    Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25
    Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994) Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the Δlog P parameter of Seiler. J Pharm Sci 83:1085–1100
    Colclough N, Hunter A, Kenny PW, Kittlety RS, Lobedan L, Tam KY, Timms MA (2008) High throughput solubility determination with application to selection of compounds for fragment screening. Bioorg Med Chem 16:6611–6616
    Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9:929–939
    Ekins S, Honeycutt JD, Metz JT (2010) Multiobjective optimization for drug discovery. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry, drug discovery and development, 7th edn. Wiley, New York
    Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431
    van de Waterbeemd H, Smith DA, Jones BC (2001) Lipophilicity in PK design: methyl, ethyl, futile…. J Comput-Aided Mol Des 15:273–286
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comp Sci 41:856–864
    Woltosz WS (2012) If we designed airplanes like we design drugs. J Comput-Aided Mol Des 26:159–163
    Kenny PW (2009) Hydrogen bonding, electrostatic potential and molecular design. J Chem Inf Model 49:1234–1244
    Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66
    Hou TJ, Xia K, Zhang W, Xu XJ (2004) ADME evaluation in drug discovery. 4. prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comp Sci 44:266–275
    ADME/T prediction models and databases. http://modem.ucsd.edu/adme/databases/databases_logS.htm . Accessed 15 Oct 2012
    LOGKOW, A databank of evaluated octanol-water partition coefficients. http://logkow.cisti.nrc.ca/logkow/index.jsp . Accessed 26 Oct 2012
    OEChem Toolkit Manual, OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/docs/toolkits/current/html/OEChem_TK-c++/index.html . Accessed 26 Oct 2012
    SMARTS Theory Manual, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html . Accessed 16 Dec 2012
    JMP version 10.0.0, SAS Institute, Cary, NC 27513. http://www.jmp.com . Accessed 16 Dec 2012
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127–136
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890
    Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756
    Maxwell JC (1874) Van der Waals on the continuity of gaseous and liquid states. Nature 10:477–480
    Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834
    Tarcsay A, Kinga N, Keserű GM (2012) Impact of lipophilic efficiency on compound quality. J Med Chem 55:1252–1260
    Ritchie TJ, Ertl P, Lewis R (2011) The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov Today 16:65–72
    Hill AP, Young RJ (2010) Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today 15:648–655
    Ritchie TJ, MacDonald SJF (2009) The impact of aromatic ring count on compound developability: are too many aromatic rings a liability in drug design? Drug Discov Today 14:1011–1020
    Kenny PW (2012) Computation, experiment and molecular design. J Comput-Aided Mol Des 26:69–72
    Johnstone C (2012) Medicinal chemistry matters—a call for discipline in our discipline. Drug Discov Today 17:538–543
    Stahl M, Bajorath J (2011) Computational medicinal chemistry. J Med Chem 54:1–2