Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Photodynamic therapy for the treatment of induced mammary tumor in rats (2013)

  • Authors:
  • USP affiliated authors: MORIYAMA, LILIAN TAN - IFSC ; BAGNATO, VANDERLEI SALVADOR - IFSC
  • USP Schools: IFSC; IFSC
  • DOI: 10.1007/s10103-012-1114-3
  • Subjects: TERAPIA FOTODINÂMICA; NEOPLASIAS MAMÁRIAS; EMISSÃO DA LUZ
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10103-012-1114-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10103-012-1114-3 (Fonte: Unpaywall API)

    Título do periódico: Lasers in Medical Science

    ISSN: 0268-8921,1435-604X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lasers in Medical Science

    ISSN: 0268-8921

    Citescore - 2017: 2.14

    SJR - 2017: 0.713

    SNIP - 2017: 1.067


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89020814PROD020814
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA, Isabelle; FERREIRA, Juliana; VOLLET FILHO, José Dirceu; et al. Photodynamic therapy for the treatment of induced mammary tumor in rats. Lasers in Medical Science, London, Springer, v. 28, n. 2, p. 571-577, 2013. Disponível em: < http://dx.doi.org/10.1007/s10103-012-1114-3 > DOI: 10.1007/s10103-012-1114-3.
    • APA

      Ferreira, I., Ferreira, J., Vollet Filho, J. D., Moriyama, L. T., Bagnato, V. S., Salvadori, D. M. F., & Rocha, N. S. (2013). Photodynamic therapy for the treatment of induced mammary tumor in rats. Lasers in Medical Science, 28( 2), 571-577. doi:10.1007/s10103-012-1114-3
    • NLM

      Ferreira I, Ferreira J, Vollet Filho JD, Moriyama LT, Bagnato VS, Salvadori DMF, Rocha NS. Photodynamic therapy for the treatment of induced mammary tumor in rats [Internet]. Lasers in Medical Science. 2013 ; 28( 2): 571-577.Available from: http://dx.doi.org/10.1007/s10103-012-1114-3
    • Vancouver

      Ferreira I, Ferreira J, Vollet Filho JD, Moriyama LT, Bagnato VS, Salvadori DMF, Rocha NS. Photodynamic therapy for the treatment of induced mammary tumor in rats [Internet]. Lasers in Medical Science. 2013 ; 28( 2): 571-577.Available from: http://dx.doi.org/10.1007/s10103-012-1114-3

    Referências citadas na obra
    Sasco AJ (2003) Breast cancer and the environment. Horm Res 60(Suppl 3):50
    Gama A, Alves A, Schmitt F (2008) Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch 453:123–132
    Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, Van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62(3):244–278
    Cardiff RD, Wellings SR (1999) The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 4:105–122
    Russo J, Russo IH (1996) Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 39:7–20
    Dl M, Mehta RG, Thompson CA, Dinger N, Caldwell JA, Moon RC (1982) Enhanced inhibition of mammary carcinogenesis by combined treatment with N-(4-hydroxyphenyl)retinamide and ovariectomy. Cancer Res 42:508–512
    Clinton SK, Imrey PB, Alster JM, Simon J, Truex CR, Visek WJ (1984) The combined effects of dietary protein and fat on 7,12-dimethylbenz(a)anthracene-induced breast cancer in rats. J Nutr 114:1213–1223
    Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104:938–967
    Heffelfinger SC, Gear RB, Taylor K, Miller MA, Schneider J, Ladow K, Warshawsky D (2000) DMBA-induced mammary pathologies are angiogenic in vivo and in vitro. Lab Invest 80:485–492
    Kubatka P, Ahlersová E, Ahlers I, Bojková B, Kalická K, Adámeková E, Marková M, Chamilová M, Cermáková M (2002) Variability of mammary carcinogenesis induction in female Sprague–Dawley and Wistar:Han rats: the effect of season and age. Physiol Res 51:633–640
    Barros AC, Muranaka ENK, Mori JL, Pelizon HT, Iriya K, Giocondo G, Pinotti JA (2004) Induction of experimental mammary carcinogenesis in rats with 7,12-dimethylbenz(a)anthracene. Rev Hosp Clin Fac Med Sao Paulo 59:257–261
    Gear RB, Yan M, Schneider J, Succop P, Heffelfinger SC, Clegg DJ (2007) Charles River Sprague Dawley rats lack early age-dependent susceptibility to DMBA-induced mammary carcinogenesis. Int J Biol Sci 3(7):408–416
    Isaacs JT (1986) Genetic control of resistance to chemically induced mammary adenocarcinogenesis in the rat. Cancer Res 46(8):3958–3963
    Huggins C, Morii S, Grand LC (1961) Mammary cancer induced by a single dose of polynuclear hydrocarbons: routes of administration. Ann Surg 154(6):315–318
    Russo IH, Russo J (1978) Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst 61(6):1439–1449
    Lucroy MD, Edwards BF, Madewell BR (2000) Veterinary photodynamic therapy. J Am Vet Med Assoc 216(11):1745–1751
    Daniell MD, Hill JS (1991) A history of photodynamic therapy. Aust N Z J Surg 61(5):340–348
    Machado AEH (2000) Terapia Fotodinâmica: Princípios. Potencial de Aplicação e Perspectivas. Quím Nova 23(2):237–243
    Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55(1):145–157
    Dougherty TJ (2002) An update on photodynamic therapy applications. J Clin Laser Med Surg 20(1):3–7
    Triesscheijn M et al (2006) Photodynamic therapy in oncology. Oncologist 11(9):1034–1044
    Wilson BC (1989) Photodynamic therapy: light delivery and dosage for second-generation photosensitizers. CIBA Found Symp 146:60–77
    Hourdakis CJ, Perris A (1995) A Monte Carlo estimation of tissue optical properties for use in laser dosimetry. Phys Med Biol 40(3):351–364
    Prahl SA, Vangemert MJC, Welch AJ (1993) Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt 32(4):559–568
    Tsai C-L, Yang Y-F, Han C-C, Hsieh J-H, Chang M (2001) Measurement and simulation of light distribution in biological tissues. Appl Opt 40(31):5770–5777
    Lualdi M, Colombo A, Farina B, Tomatis S, Marchesini R (2001) A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med 28(3):237–243
    Star WM (1997) Light dosimetry in vivo. Phys Med Biol 42(5):763–787
    Zhu TC, Finlay JC, Hahn SM (2005) Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy. J Photochem Photobiol B 79(3):231–241
    Lucroy MD (2007) Photodynamic therapy. In: Withrow SJ, Vail DM (eds) Small animal clinical oncology, 4th edn. Saunders, St Louis, pp 86–91
    Saczko J, Kulbacka J, Chwiłkowska A, Drag-Zalesinska M, Wysocka T, Ługowski M, Banas T (2005) The influence of photodynamic therapy on apoptosis in human melanoma cell line. Folia Histochem Cytobiol 43(3):129–132
    Allison RR, Mang T, Hewson G, Snider W, Dougherty D (2001) Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer 91(1):1–8
    Cuenca RE, Allison RR, Sibata C, Downie GH (2004) Breast cancer with chest wall progression: treatment with photodynamic therapy. Ann Surg Oncol 11(3):322–327
    Allison RR, Sibata C, Mang TS, Bagnato VS, Downie GH, Hub XH, Cuenca RE (2004) Photodynamic therapy for chest wall recurrence from breast cancer. Photodiagn Photodyn Ther 1:157–171
    Gibson SL, Nguyen ML, Foster TH, White G, Hilf R (1995) Efficacy of photodynamic therapy on original and recurrent rat mammary tumors. Photochem Photobiol 61(2):196–199
    Solban N, Rizvi I, Hasan T (2006) Targeted photodynamic therapy. Lasers Surg Med 38(5):522–531
    Ferreira J, Kurachi C, Melo CAS, Moriyama LT, Zucoloto S, Bagnato VS (2004) Necrosis characteristics of photodynamics therapy in normal rat liver. Laser Phys 14(2):209–212
    Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1(4):279–293
    Chen B, Pogue BW, Hoopes PJ, Hasan T (2005) Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys 61(4):1216–1226
    Chen B, Pogue BW, Luna JM, Hardman RL, Hoopes PJ, Hasan T (2006) Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin Cancer Res 12:917–923
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257
    Casas A, Fukuda H, Meiss R, Batlle AM (1999) Topical and intratumoral photodynamic therapy with 5-aminolevulinic acid in a subcutaneous murine mammary adenocarcinoma. Cancer Lett 141(1–2):29–38
    Colombo LL, Vanzulli SI, Villanueva A, Cañete M, Juarranz A, Stockert JC (2005) Long-term regression of the murine mammary adenocarcinoma, LM3, by repeated photodynamic treatments using meso-tetra (4-N-methylpyridinium) porphine. Int J Oncol 27(4):1053–1059
    Fl McNair, Marples B, West CML, Moore JV (1997) Comet assay of DNA damage and repair in K562 cells after photodynamic therapy using haematoporphyrin derivative, methylene blue and meso-tetrahydroxyphenylchlorin. Br J Cancer 75(12):1721–1729