Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Conformation analysis of a surface loop that controls active site access in the GH11 xylananse A from Bacillus subtilis (2012)

  • Authors:
  • USP affiliated authors: WARD, RICHARD JOHN - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1007/s00894-011-1172-7
  • Subjects: BACTÉRIAS; PROTEÍNAS; ENZIMOLOGIA; FÍSICO-QUÍMICA ORGÂNICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00894-011-1172-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Molecular Modeling

    ISSN: 1610-2940

    Citescore - 2017: 1.17

    SJR - 2017: 0.36

    SNIP - 2017: 0.461


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2343912pcd 2343912 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VIEIRA, Davi Serradella; WARD, Richard John. Conformation analysis of a surface loop that controls active site access in the GH11 xylananse A from Bacillus subtilis. Journal of Molecular Modeling, Heidelberg, v. 18, n. 4, p. 1473-1479, 2012. Disponível em: < http://dx.doi.org/10.1007/s00894-011-1172-7 > DOI: 10.1007/s00894-011-1172-7.
    • APA

      Vieira, D. S., & Ward, R. J. (2012). Conformation analysis of a surface loop that controls active site access in the GH11 xylananse A from Bacillus subtilis. Journal of Molecular Modeling, 18( 4), 1473-1479. doi:10.1007/s00894-011-1172-7
    • NLM

      Vieira DS, Ward RJ. Conformation analysis of a surface loop that controls active site access in the GH11 xylananse A from Bacillus subtilis [Internet]. Journal of Molecular Modeling. 2012 ; 18( 4): 1473-1479.Available from: http://dx.doi.org/10.1007/s00894-011-1172-7
    • Vancouver

      Vieira DS, Ward RJ. Conformation analysis of a surface loop that controls active site access in the GH11 xylananse A from Bacillus subtilis [Internet]. Journal of Molecular Modeling. 2012 ; 18( 4): 1473-1479.Available from: http://dx.doi.org/10.1007/s00894-011-1172-7

    Referências citadas na obra
    Wakarchuk WW, Campbell RL, Sung WL, Voodi J, Yaguchi M (1994) Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci 3:467–475
    Vieira DS, Degrève L, Ward RJ (2009) Characterization of temperature dependence and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation. Biochim Biophys Act 1790:1301–1306
    Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM (2009) Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins 77:395–403
    Vieira DS, Degrève L (2009) An insight into the thermostability of a pair of xylanase: the role of hydrogen bonds. Mol Phys 1:59–69
    Kulkarni N, Shendy A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456
    Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696
    Murakami MT, Arni RK, Vieira DS, Degrève L, Ruller R, Ward RJ (2005) Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant GH11 xylanase A from strain 168 (1A1). FEBS Lett 579:6505–6510
    Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 37:13475–13485
    Muilu J, Törronen A, Peräkyä M, Rouvinen J (1998) Functional conformational changes of Endo-1,4-xylanase II from trichoderma reesei: a molecular dynamics study. Proteins 31:434–444
    Törrönen A, Rouvinen J (1995) Structural comparison of 2 major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34:847–856
    Havukainen R, Törrönen A, Laitinen T, Rouvinen J (1996) Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry 35:9617–9624
    Karplus M, McCammon A (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652
    Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127
    Paës G, Tran V, Takahashi M, Boukari I, O’Donohue MJ (2007) New insights into the role of thumb-like loop in GH-II xylanases. Protein Eng Des Selec 20:15–23
    Cortés J, Simeon T, de Ângulo VR, Guieysse AD, Remaud-Simeon M, Tran V (2005) A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21:I116–I125
    Bussi G, Donadio D, Parrinello M (2006) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14108
    Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Constant temperature molecular dynamics simulations of energetic particle-solid collisions: comparison of temperature control methods. J Chem Phys 81:3684–3690
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interactions models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel , Dordrecht
    Hess B, Becker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
    Miyamo S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962
    van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Sim 1:173–185
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald-an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092
    Arfken G (1985) The method of steepest descents in mathematical methods for physicists, 3rd edn. Academic Press, Orlando, p 1985
    Gordon JC, Myers JB, Folta T, Shoja V, Health LS, Onufriev A (2005) A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371
    McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced and scalable molecular simulation. J Chem Theor Comput 4:435–447
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) In Biomolecular Simulation: the GROMOS96 Manual and User Guide, Biomos, Groningen
    Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M (1994) Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng 7:1379–1386
    Derreumaux P, Schilk T (1998) The loop opening/closing motion of the enzyme triosephosphate isomerase. Biophys J 74:72–81
    Ramasubu N, Ragunath C, Mishra PJ (2003) Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J Mol Biol 325:1061–1076
    Gulotta M, Deng H, Deng H, Dyer RB, Callender RH (2002) Toward an understanding of the role of dynamics on enzymatic catalysis in lactate dehydrogenase. Biochemistry 41:3353–3363
    Vandermarliere E, Bourgois TM, Rombouts S, Van Campenhout S, Volckaert G, Strelkov SV, Delcour JA, Rabijins A, Courtin CM (2008) Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-beta-xylanases. Biochemistry J 410:71–79