Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide (2013)

  • Authors:
  • USP affiliated authors: HOJO, ELZA TIEMI SAKAMOTO - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1007/s10238-012-0201-x
  • Subjects: NEOPLASIAS CEREBRAIS; ANTINEOPLÁSICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10238-012-0201-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Clinical and Experimental Medicine

    ISSN: 1591-8890

    Citescore - 2017: 2.19

    SJR - 2017: 0.848

    SNIP - 2017: 0.744


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2387226pcd 2387226 estantes deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MONTALDI, Ana P.; SAKAMOTO-HOJO, Elza Tiemi. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide. Clinical and Experimental Medicine, Milan, v. 13, n. 4, p. 279-288, 2013. Disponível em: < http://dx.doi.org/10.1007/s10238-012-0201-x > DOI: 10.1007/s10238-012-0201-x.
    • APA

      Montaldi, A. P., & Sakamoto-Hojo, E. T. (2013). Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide. Clinical and Experimental Medicine, 13( 4), 279-288. doi:10.1007/s10238-012-0201-x
    • NLM

      Montaldi AP, Sakamoto-Hojo ET. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide [Internet]. Clinical and Experimental Medicine. 2013 ; 13( 4): 279-288.Available from: http://dx.doi.org/10.1007/s10238-012-0201-x
    • Vancouver

      Montaldi AP, Sakamoto-Hojo ET. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide [Internet]. Clinical and Experimental Medicine. 2013 ; 13( 4): 279-288.Available from: http://dx.doi.org/10.1007/s10238-012-0201-x

    Referências citadas na obra
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453
    Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4:209–224
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710
    Shapiro WR, Shapiro JR (1998) Biology and treatment of malignant glioma. Oncology 12:233–240
    Prados MD, Russo C (1998) Chemotherapy of brain tumor. Semin Surg Oncol 14:88–95
    Tentori L, Graziani G (2002) Pharmacological strategies to increase the antitumor activity of methylating agents. Curr Med Chem 9:1285–1301
    Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L (2007) Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 56:275–287
    Pegg AE (2000) Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res 462:83–100
    Bobola MS, Blank A, Berger MS, Silber JR (1995) Contribution of O6-methylguanine-DNA methyltransferase to monofunctional alkylating-agent resistance in human brain tumor-derived cell lines. Mol Carcinog 13:70–80
    Bobola MS, Tseng SH, Blank A, Berger MS, Silber JR (1996) Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res 2:735–741
    Bocangel DB, Finkelstein S, Schold SC, Bhakat KK, Mitra S, Kokkinakis DM (2002) Multifaceted resistance of gliomas to temozolomide. Clin Cancer Res 8:2725–2734
    Tentori L, Graziani G (2002) Pharmacological strategies to increase the antitumor activity of methylating agents. Curr Med Chem 9:1285–1301
    Sobol RW, Wilson SH (2001) Mammalian DNA h-polymerase in base excision repair of alkylation damage. Prog Nucleic Acid Res Mol Biol 68:57–74
    Willson SH (1998) Mammalian base excision repair and DNA polymerase β. Mutat Res 407:203–215
    Dogliotti E, Fortini P, Pascucci B, Parlanti E (2001) Multiple pathways for DNA base excision repair. The mechanism of switching among multiple BER pathways. Prog Nucleic Acid Res Mol Biol 68:1–28
    Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695–711
    Baute J, Depicker A (2008) Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 43:239–276
    Liu L, Gerson SL (2004) Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs 5:623–627
    Madhusudan S, Hickson ID (2005) DNA repair inhibition: a selective tumour targeting strategy. Trends Mol Med 11:503–511
    Talpaert-Borlé M, Liuzzi M (1983) Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine. A method for the quantitative assay of AP sites in DNA. Biochim Biophys Acta 740:410–416
    Liuzzi M, Talpaert-Borle M (1985) A new approach to the study of the base-excision repair pathway using methoxyamine. J Biol Chem 260:5252–5258
    Rosa S, Fortini P, Karran P, Bignami M, Dogliotti E (1991) Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo. Nucleic Acids Res 19:5569–5574
    Fortini P, Calcagnile A, Vrieling H, van Zeeland AA, Bignami M, Dogliotti E (1993) Mutagenic processing of ethylation damage in mammalian cells: the use of methoxyamine to study apurinic/apyrimidinic site-induced mutagenesis. Cancer Res 53:1149–1155
    Horton JK, Baker A, Berg BJ, Sobol RW, Wilson SH (2002) Involvement of DNA polymerase beta in protection against the cytotoxicity of oxidative DNA damage. DNA Repair (Amst) 1:317–333
    Adhikari S, Choudhury S, Mitra PS, Dubash JJ, Sajankila SP, Roy R (2008) Targeting base excision repair for chemosensitization. Anticancer Agents Med Chem 8:351–357
    Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells—potential partners in glioma drug resistance? Cancer Treat Rev 34:558–567
    Fishel ML, He Y, Smith ML, Kelley MR (2007) Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 13:260–267
    Fishel ML, Kelley MR (2007) The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 28:375–395
    O’Connor MJ, Martin NM, Smith GC (2007) Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26:7816–7824
    Mohammed MZ, Vyjayanti VN, Laughton CA, Dekker LV, Fischer PM, Wilson DM 3rd et al (2011) Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br J Cancer 104:653–663
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479
    Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191
    Parkinson JF, Wheeler HT, McDonald KL (2008) Contribution of DNA repair mechanisms to determining chemotherapy response in high-grade glioma. J Clin Neurosci 15:1–8
    Bapat A, Fishel ML, Kelley MR (2009) Going ape as an approach to cancer therapeutics. Antioxid Redox Signal 11:651–668
    Liu L, Nakatsuru Y, Gerson SL (2002) Base excision repair as a therapeutic target in colon cancer. Clin Cancer Res 8:2985–2991
    Liu L, Yan L, Donze JR, Gerson SL (2003) Blockage of abasic site repair enhances antitumor efficacy of 1,3-bis-(2-chloroethyl)-1-nitrosourea in colon tumor xenografts. Mol Cancer Ther 2:1061–1066
    Hammond LA, Eckardt JR, Baker SD, Eckhardt SG, Dugan M, Forral K, Reidenberg P, Statkevich P, Weiss GR, Rinaldi DA, Von Hoff DD, Rowinsky EK (1999) Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J Clin Oncol 17:2604–2613
    Taverna P, Liu L, Hwang HS, Hanson AJ, Kinsellatj TJ, Gerson SL (2001) Methoxyamine potentiates DNA single strand breaks and double strand breaks induced by temozolomide in colon cancer cells. Mutat Res 485:269–281
    Rinne M, Caldwell D, Kelley MR (2004) Transient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells. Mol Cancer Ther 3:955–967
    Danson SJ, Middleton MR (2001) Temozolomide: a novel oral alkylating agent. Expert Rev Anticancer Ther 1:13–19
    Hirose Y, Berger MS, Pieper RO (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61:1957–1963
    Sato Y, Kurose A, Ogawa A, Ogasawara K, Traganos F, Darzynkiewicz Z, Sawai T (2009) Diversity of DNA damage response of astrocytes and glioblastoma cell lines with various p53 status to treatment with etoposide and temozolomide. Cancer Biol Ther 8:452–457
    Natsumeda M, Aoki H, Miyahara H, Yajima N, Uzuka T, Toyoshima Y, Kakita A, Takahashi H, Fujii Y (2011) Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 31:486–493
    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457
    Hirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO (2005) Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide induced mitotic catastrophe and cellular senescence. Cancer Res 65:4861–4869
    Thomson BG, Tritt R, Davis M, Perlman EJ, Kelley MR (2000) Apurinic/apyrimidinic endonuclease expression in pediatric yolk sac tumors. Anticancer Res 20:4153–4157
    Bobola MS, Blank A, Berger MS, Stevens BA, Silber JR (2001) Apurinic/apyrimidinic endonuclease activity is elevated in human adult gliomas. Clin Cancer Res 7:3510–3518
    Kelley MR, Cheng L, Foster R, Tritt R, Jiang J, Broshears J, Koch M (2001) Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer. Clin Cancer Res 7:824–830
    Zhang J, Stevens MF, Laughton CA, Madhusudan S, Bradshaw TD (2010) Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications. Oncology 78:103–114
    Liu L, Taverna P, Whitacre CM, Chatterjee S, Gerson SL (1999) Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin Cancer Res 5:2908–2917
    Warbrick E, Coates PJ, Hall PA (1998) Fen1 expression: a novel marker for cell proliferation. J Pathol 186:319–324
    Rumbaugh JA, Henricksen LA, DeMott MS, Bambara RA (1999) Cleavage of substrates with mismatched nucleotides by Flap endonuclease-1. Implications for mammalian Okazaki fragment processing. J Biol Chem 274:14602–14608
    Chang DJ, Lupardus PJ, Cimprich KA (2006) Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activitie. J Biol Chem 281:32081–32088
    Wood A, Garg P, Burgers PM (2007) A Ubiquitin-binding motif in the translesion DNA polymerase rev1 mediates its essential functional interaction with ubiquitinated PCNA in response to DNA damage. J Biol Chem 282:20256–20263
    Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16:3341–3348
    Balajee AS, Geard CR (2001) Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells. Nucleic Acids Res 29:1341–1351
    Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060
    Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079–1099
    Ang C, Guiot MC, Ramanakumar AV, Roberge D, Kavan P (2010) Clinical significance of molecular biomarkers in glioblastoma. Can J Neurol Sci 37:625–630
    Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, Kaina B, Weller M (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96:766–776
    Silber JR, Blank A, Bobola MS, Ghatan S, Kolstoe DD, Berger MS (1999) O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumor progression after alkylating agent-based chemotherapy. Clin Cancer Res 5:807–814
    Zawlik I, Vaccarella S, Kita D, Mittelbronn M, Franceschi S, Ohgaki H (2009) Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32:21–29
    Jung TY, Jung S, Moon KS, Kim IY, Kang SS, Kim YH, Park CS, Lee KH (2010) Changes of the O6-methylguanine-DNA methyltransferase promoter methylation and MGMT protein expression after adjuvant treatment in glioblastoma. Oncol Rep 23:1269–1276
    Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, Hamilton RL, Banze LA, Brown AR, Sobol RW (2011) N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neuro Oncol 13:471–486