Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The log-beta Weibull regression model with application to predict recurrence of prostate cancer (2013)

  • Authors:
  • USP affiliated authors: ORTEGA, EDWIN MOISES MARCOS - ESALQ
  • USP Schools: ESALQ
  • DOI: DOI 10.1007/s00362-011-0414-1
  • Subjects: ANÁLISE DE REGRESSÃO E CORRELAÇÃO (MODELOS); DISTRIBUIÇÕES (PROBABILIDADE)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: DOI 10.1007/s00362-011-0414-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: DOI 10.1007/s00362-011-0414-1 (Fonte: Unpaywall API)

    Título do periódico: Acta Crystallographica Section F Structural Biology and Crystallization Communications

    ISSN: 1744-3091

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:
    Informações sobre o Citescore
  • Título: Statistical Papers

    ISSN: 0932-5026

    Citescore - 2017: 0.94

    SJR - 2017: 1.004

    SNIP - 2017: 1.515


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ESABC2393389-10Recurso online
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ORTEGA, Edwin Moisés Marcos; CORDEIRO, Gauss Moutinho; KATTAN, Michael W. The log-beta Weibull regression model with application to predict recurrence of prostate cancer. Statistical Papers, New York, v. 54, p. 113\2013132, 2013. Disponível em: < http://link.springer.com/content/pdf/10.1007%2Fs00362-011-0414-1.pdf > DOI: DOI 10.1007/s00362-011-0414-1.
    • APA

      Ortega, E. M. M., Cordeiro, G. M., & Kattan, M. W. (2013). The log-beta Weibull regression model with application to predict recurrence of prostate cancer. Statistical Papers, 54, 113\2013132. doi:DOI 10.1007/s00362-011-0414-1
    • NLM

      Ortega EMM, Cordeiro GM, Kattan MW. The log-beta Weibull regression model with application to predict recurrence of prostate cancer [Internet]. Statistical Papers. 2013 ; 54 113\2013132.Available from: http://link.springer.com/content/pdf/10.1007%2Fs00362-011-0414-1.pdf
    • Vancouver

      Ortega EMM, Cordeiro GM, Kattan MW. The log-beta Weibull regression model with application to predict recurrence of prostate cancer [Internet]. Statistical Papers. 2013 ; 54 113\2013132.Available from: http://link.springer.com/content/pdf/10.1007%2Fs00362-011-0414-1.pdf

    Referências citadas na obra
    Cancho VG, Bolfarine H, Achcar JA (1999) A Bayesian analysis for the exponentiated-Weibull distribution. J Appl Stat 8: 227–242
    Cancho VG, Ortega EMM, Bolfarine H (2009) The log-exponentiated-Weibull regression models with cure rate: local influence and residual analysis. J Data Sci 7: 433–458
    Carrasco JMF, Ortega EMM, Cordeiro MG (2008) A generalized modified Weibull distribution for lifetime modeling. Comput Stat Data Anal 53: 450–462
    Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81: 883–898
    Cordeiro GM, Silva GO, Ortega EMM (2011) The beta-Weibull geometric distribution. Statistics. doi: 10.1080/02331888.2011.577897
    Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc Ser B (Stat Methodol) 34: 187–220
    Famoye F, Lee C, Olumolade O (2005) The beta-Weibull distribution. J Stat Theory Appl 4: 121–136
    Gradshteyn IS, Ryzhik IM (2000) In: Jeffrey A, Zwillinger D (eds) Table of integrals, series, and products, 6th edn. Academic Press, New York
    Gupta RD, Kundu D (1999) Generalized exponential distributions. Austral N Z J Stat 41: 173–188
    Hashimoto EM, Ortega EMM, Cancho VG, Cordeiro GM (2010) The log-exponentiated Weibull regression model for interval-censored data. Comput Stat Data Anal 54: 1017–1035
    Hjorth U (1980) A realibility distributions with increasing, decreasing, constant and bathtub failure rates. Technometrics 22: 99–107
    Kattan MW, Wheeler TM, Scardino PT (1999) Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 17: 1499–1507
    Kundu D, Raqab MZ (2005) Generalized Rayleigh distribution: different methods of estimation. Comput Stat Data Anal 49: 187–200
    Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. Trans Reliab 52: 33–37
    Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York
    Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some properties and applications to censored data. J Mod Appl Stat Methods 6: 173–186
    Mudholkar GS, Srivastava DK, Friemer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37: 436–445
    Ortega EMM, Cancho VG, Bolfarine H (2006) Influence diagnostics in exponentiated-Weibull regression models with censored data. Stat Oper Res Trans 30: 172–192
    Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, vol 1. Gordon and Breach Science Publishers, Amsterdam
    Rajarshi S, Rajarshi MB (1988) Bathtub distributions. Commun Stat Theory Methods 17: 2521–2597
    Smith RM, Bain LJ (1975) An exponential power life testing distributions. Commun Stat Theory Methods 4: 469–481
    Stacy EW (1962) A generalization of the gamma distribution. Ann Math Stat 33: 1187–1192
    Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ Jr, Dotan ZA, DiBlasio CJ, Reuther A, Klein EA, Kattan MW (2005) Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol 23: 7005–7012
    Xie M, Lai CD (1995) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52: 87–93