Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production (2013)

  • Authors:
  • USP affiliated authors: CHAMMAS, ROGER - FM
  • USP Schools: FM
  • DOI: 10.1007/s10637-012-9871-1
  • Subjects: ESTRESSE; NEOPLASIAS (TERAPIA); MECANISMOS DE CONTROLE CELULAR; ADENOCARCINOMA; APOPTOSE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10637-012-9871-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1007/s10637-012-9871-1 (Fonte: Unpaywall API)

    Título do periódico: Investigational New Drugs

    ISSN: 0167-6997,1573-0646

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Investigational New Drugs

    ISSN: 0167-6997

    Citescore - 2017: 3.71

    SJR - 2017: 1.573

    SNIP - 2017: 0.909


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2394890-10BCSEP 290 2013
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARIA, Durvanei Augusto; SOUZA, Jean Gabriel de; MORAIS, Katia L. P.; et al. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Investigational New Drugs, Boston, v. 31, n. 3, p. 493-505, 2013. Disponível em: < http://link.springer.com/article/10.1007/s10637-012-9871-1 > DOI: 10.1007/s10637-012-9871-1.
    • APA

      Maria, D. A., Souza, J. G. de, Morais, K. L. P., Berra, C. M., Zampolli, H. de C., Demasi, M., et al. (2013). A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Investigational New Drugs, 31( 3), 493-505. doi:10.1007/s10637-012-9871-1
    • NLM

      Maria DA, Souza JG de, Morais KLP, Berra CM, Zampolli H de C, Demasi M, Simons SM, Saito R de F, Chammas R, Chudzinski-Tavassi AM. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production [Internet]. Investigational New Drugs. 2013 ; 31( 3): 493-505.Available from: http://link.springer.com/article/10.1007/s10637-012-9871-1
    • Vancouver

      Maria DA, Souza JG de, Morais KLP, Berra CM, Zampolli H de C, Demasi M, Simons SM, Saito R de F, Chammas R, Chudzinski-Tavassi AM. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production [Internet]. Investigational New Drugs. 2013 ; 31( 3): 493-505.Available from: http://link.springer.com/article/10.1007/s10637-012-9871-1

    Referências citadas na obra
    King FW, Fong S, Griffin C, Shoemaker M, Staub R, Zhang YL, Cohen I, Shtivelman E (2009) Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress. PLoS One 4(9):e7283. doi: 10.1371/journal.pone.0007283
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013
    Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C (2008) Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 44(2):160–168. doi: 10.1016/j.freeradbiomed.2007.05.028
    Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P (2001) Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8(8):829–840. doi: 10.1038/sj.cdd.4400883
    Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21(4):551–555. doi: 10.1016/j.copbio.2010.07.001
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–2190. doi: 10.1152/ajpheart.00554.2011
    Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15(5):767–776. doi: 10.1016/j.molcel.2004.08.025
    Sy LK, Yan SC, Lok CN, Man RY, Che CM (2008) Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res 68(24):10229–10237. doi: 10.1158/0008-5472.CAN-08-1983
    Azad N, Iyer A, Vallyathan V, Wang L, Castranova V, Stehlik C, Rojanasakul Y (2010) Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Ann N Y Acad Sci 1203:1–6. doi: 10.1111/j.1749-6632.2010.05608.x
    Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280(20):19911–19924. doi: 10.1074/jbc.M412443200
    Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(Pt 2):345–350
    Griscavage JM, Hobbs AJ, Ignarro LJ (1995) Negative modulation of nitric oxide synthase by nitric oxide and nitroso compounds. Adv Pharmacol 34:215–234
    Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N (2010) The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52(4):1310–1321. doi: 10.1002/hep.23836
    Shankar S, Srivastava RK (2007) Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 30(4):905–918
    Dlamini Z, Mbita Z, Zungu M (2004) Genealogy, expression, and molecular mechanisms in apoptosis. Pharmacol Ther 101(1):1–15
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135–139. doi: 10.1126/science.1081208
    Soriano ME, Scorrano L (2010) The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis. Adv Exp Med Biol 687:97–114
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi: 10.1038/35042675
    Jin S, Levine AJ (2001) The p53 functional circuit. J Cell Sci 114(Pt 23):4139–4140
    Slee EA, O'Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23(16):2809–2818. doi: 10.1038/sj.onc.1207516
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014. doi: 10.1126/science.1092734
    Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590
    Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV (2008) Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis 13(7):904–914. doi: 10.1007/s10495-008-0221-x
    Drexler HC (2009) Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One 4(1):e4161. doi: 10.1371/journal.pone.0004161
    Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65(24):11658–11666. doi: 10.1158/0008-5472.CAN-05-2370
    Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27(3):285–299. doi: 10.1038/sj.onc.1210638
    Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22(10):2309–2317. doi: 10.1093/emboj/cdg227
    Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev 3(4):246–255. doi: 10.1038/nrm780
    Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004) The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 3(1):59–70
    Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704. doi: 10.1128/MCB.24.22.9695-9704.2004
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. doi: 10.1146/annurev.biochem.73.011303.074134
    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev 4(7):552–565. doi: 10.1038/nrm1150
    Chudzinski-Tavassi AM, De-Sa-Junior PL, Simons SM, Maria DA, de Souza VJ, Batista IF, Faria F, Duraes E, Reis EM, Demasi M (2010) A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 56(7):1145–1154. doi: 10.1016/j.toxicon.2010.04.019
    Batista IF, Ramos OH, Ventura JS, Junqueira-de-Azevedo IL, Ho PL, Chudzinski-Tavassi AM (2010) A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch Biochem Biophys 493(2):151–156. doi: 10.1016/j.abb.2009.10.009
    Akagi EM, Junior PL, Simons SM, Bellini MH, Barreto SA, Chudzinski-Tavassi AM (2012) Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma "in vitro". Biomed Pharmacother 66(1):64–69. doi: 10.1016/j.biopha.2011.11.015
    Bellini MH, Coutinho EL, Courrol LC, de Oliveira R, Silva F, Vieira Junior ND, Schor N (2008) Correlation between autofluorescence intensity and tumor area in mice bearing renal cell carcinoma. J Fluoresc 18(6):1163–1168. doi: 10.1007/s10895-008-0368-4
    Rocha FG, Calvo FB, Chaves KC, Peron JP, Marques RF, de Borba TR, Braga MS, Pereira CB, Vicente EJ, Chammas R, Schor N, Bellini MH (2011) Endostatin- and interleukin-2-expressing retroviral bicistronic vector for gene therapy of metastatic renal cell carcinoma. J Gene Med 13(3):148–157. doi: 10.1002/jgm.1547
    Murphy GP, Hrushesky WJ (1973) A murine renal cell carcinoma. J Natl Cancer Inst 50(4):1013–1025
    Lameu C, Hayashi MA, Guerreiro JR, Oliveira EF, Lebrun I, Pontieri V, Morais KL, Camargo AC, Ulrich H (2010) The central nervous system as target for antihypertensive actions of a proline-rich peptide from Bothrops jararaca venom. Cytometry A 77(3):220–230. doi: 10.1002/cyto.a.20860
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262
    Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46(2):211–226
    Kabore AF, Johnston JB, Gibson SB (2004) Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targets 4(2):147–163
    Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10(1–2):13–29. doi: 10.1016/j.drup.2007.01.003
    Kim R, Emi M, Matsuura K, Tanabe K (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14(1):1–11. doi: 10.1038/sj.cgt.7700986
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. doi: 10.1038/nature03579
    Ralph SJ, Low P, Dong L, Lawen A, Neuzil J (2006) Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Pat Anticancer Drug Discov 1(3):327–346
    Biasutto L, Dong LF, Zoratti M, Neuzil J (2010) Mitochondrially targeted anti-cancer agents. Mitochondrion 10(6):670–681. doi: 10.1016/j.mito.2010.06.004
    Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS, Gius D, Neckers L (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 3(5):551–566
    Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev 4(3):181–191. doi: 10.1038/nrm1052
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi: 10.1038/47513
    Faitova J, Krekac D, Hrstka R, Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11(4):488–505. doi: 10.2478/s11658-006-0040-4
    Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, Grant S (2007) The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15):5499–5513. doi: 10.1128/MCB.01080-06
    Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–2427. doi: 10.1089/ARS.2009.2625
    Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162(1):59–69. doi: 10.1083/jcb.200302084
    Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071
    Germain M, Shore GC (2003) Cellular distribution of Bcl-2 family proteins. Science's STKE : signal transduction knowledge environment 2003 (173):pe10. doi: 10.1126/stke.2003.173.pe10