Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Foliations and global injectivity in 'R POT.N' (2013)

  • Authors:
  • USP affiliated authors: APAZA, CARLOS ALBERTO MAQUERA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00574-013-0013-y
  • Subjects: TEORIA ERGÓDICA; TOPOLOGIA DIFERENCIAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00574-013-0013-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00574-013-0013-y (Fonte: Unpaywall API)

    Título do periódico: Bulletin of the Brazilian Mathematical Society, New Series

    ISSN: 1678-7544,1678-7714



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Bulletin of the Brazilian Mathematical Society

    ISSN: 1678-7544

    Citescore - 2017: 0.42

    SJR - 2017: 0.406

    SNIP - 2017: 0.497


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2395027-10PROD-2395027
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      APAZA, Carlos Alberto Maquera; VENATO-SANTOS, Jean. Foliations and global injectivity in 'R POT.N'. Bulletin of the Brazilian Mathematical Society, New York, Springer, v. 44, n. ju 2013, p. 273-284, 2013. Disponível em: < http://dx.doi.org/10.1007/s00574-013-0013-y > DOI: 10.1007/s00574-013-0013-y.
    • APA

      Apaza, C. A. M., & Venato-Santos, J. (2013). Foliations and global injectivity in 'R POT.N'. Bulletin of the Brazilian Mathematical Society, 44( ju 2013), 273-284. doi:10.1007/s00574-013-0013-y
    • NLM

      Apaza CAM, Venato-Santos J. Foliations and global injectivity in 'R POT.N' [Internet]. Bulletin of the Brazilian Mathematical Society. 2013 ; 44( ju 2013): 273-284.Available from: http://dx.doi.org/10.1007/s00574-013-0013-y
    • Vancouver

      Apaza CAM, Venato-Santos J. Foliations and global injectivity in 'R POT.N' [Internet]. Bulletin of the Brazilian Mathematical Society. 2013 ; 44( ju 2013): 273-284.Available from: http://dx.doi.org/10.1007/s00574-013-0013-y

    Referências citadas na obra
    E.C. Balreira. Foliations and global inversion. Comment. Math. Helv., 85(1) (2010), 73–93.
    E.C. Balreira. Incompressibility and global inversion. Topol. Methods Nonlinear Anal., 35(1) (2010), 69–76.
    H. Bass, E. Connell and D. Wright. The Jacobian Conjecture: reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc., 7 (1982), 287–330.
    R. Benedetti and J-J. Risler. Real algebraic and semialgebraic sets. Actualités Mathématiques, Paris (1990).
    A. Bialyniky-Birula and M. Rosenlicht. Injective morphisms of real algebraic varieties. Proc. Amer.Math. Soc., 13(2) (1962), 200–203.
    J. Bochnak, M. Coste and M-F Roy. Real algebraic geometry. Springer-Verlag, Berlin-Heidelberg (1998).
    M. Cobo, C. Gutierrez and J. Llibre. On the injectivity of C 1 maps of the real plane. Canad. J. Math., 54(6) (2002), 1187–1201.
    M. Cobo, C. Gutierrez and J. Llibre. Global injectivity of C 1 maps of the real plane, inseparable leaves and the Palais-Smale condition. Canad. Math. Bull., 50(3) (2007), 377–389.
    S. Cynk and K. Rusek. Injective endomorphisms of algebraic and analytic sets. Ann. PoliniciMath., 56(1) (1991), 29–35.
    L. Drużkowisk. An effective approach to Keller’s Jacobian Conjecture. Math. Ann., 264 (1983), 303–313.
    L. Drużkowisk and H. Tutaj. Differential conditions to verify the Jacobian Conjecture. Ann. Polon. Math., 46 (1992), 85–90.
    A. Fernandes, C. Gutierrez and R. Rabanal. On local diffeomorphisms of ℝn that are injective. Qual. Theory Dyn. Syst., 4(2) (2004), 255–262.
    A. Fernandes, C. Gutierrez and R. Rabanal. Global asymptotic stability for differentiable vector fields of ℝ2. Jour. of Diff. Equations, 206 (2004), 470–482.
    C. Gutierrez. A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(6) (1995), 627–671.
    C. Gutierrez and C. Maquera. Foliations and polynomial diffeomorphisms of ℝ3. Math. Zeitschrift, 262 (2009), 613–626.
    C. Gutierrez and A. Sarmiento. Injectivity of C 1 maps ℝ2 → ℝ2 at infinity and planar vector fields. Astérisque, 287 (2003), 89–102.
    J. Hadamard. Sur les transformations ponetuelles. Bull. Soc. Math. de France, 34 (1906).
    E. Hubbers. The Jacobian Conjecture: cubic homogeneous Maps in dimension four. Master’s thesis, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands, directed by A. van den Essen (1994).
    Z. Jelonek. The set of points at which a polynomial map is not proper. Ann. Polonici Math., 58 (1993), 259–266.
    Z. Jelonek. Testing sets for properness of polynomial mappings. Math. Ann., 315 (1999), 1–35.
    Z. Jelonek. Geometry of real polynomialmappings. Math. Zeitschrift, 239 (2002), 321–333.
    S. Nollet and F. Xavier. Global inversion via the Palais-Smale condition. Discrete Contin. Dyn. Syst., 8(1) (2002), 17–28.
    S. Pinchuck. A counterexample to the strong Jacobian conjecture. Math. Zeitschrift, 217 (1994), 1–4.
    R. Sacksteder. Foliations and pseudogroups. Amer. J. Math., 87 (1965), 79–170.