Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Nb as an influential element for increasing the CO tolerance of PEMFC catalysts (2013)

  • Authors:
  • USP affiliated authors: PAGANIN, VALDECIR ANTONIO - IQSC ; GONZALEZ, ERNESTO RAFAEL - IQSC
  • USP Schools: IQSC; IQSC
  • DOI: 10.1007/s10800-013-0572-z
  • Subjects: ELETROQUÍMICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10800-013-0572-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10800-013-0572-z (Fonte: Unpaywall API)

    Título do periódico: Journal of Applied Electrochemistry

    ISSN: 0021-891X,1572-8838



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Applied Electrochemistry

    ISSN: 0021-891X

    Citescore - 2017: 2.27

    SJR - 2017: 0.646

    SNIP - 2017: 0.656


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IQSC2407354-10P14484
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ROCHA, Thairo de Araujo; IBANHI, Felipe; COLMATI, Flávio; et al. Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. Journal of Applied Electrochemistry, Dordrecht, v. 43, n. 8, p. 817-827, 2013. Disponível em: < http://dx.doi.org/10.1007/s10800-013-0572-z > DOI: 10.1007/s10800-013-0572-z.
    • APA

      Rocha, T. de A., Ibanhi, F., Colmati, F., Linhares, J. J., Paganin, V. A., & Gonzalez, E. R. (2013). Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. Journal of Applied Electrochemistry, 43( 8), 817-827. doi:10.1007/s10800-013-0572-z
    • NLM

      Rocha T de A, Ibanhi F, Colmati F, Linhares JJ, Paganin VA, Gonzalez ER. Nb as an influential element for increasing the CO tolerance of PEMFC catalysts [Internet]. Journal of Applied Electrochemistry. 2013 ; 43( 8): 817-827.Available from: http://dx.doi.org/10.1007/s10800-013-0572-z
    • Vancouver

      Rocha T de A, Ibanhi F, Colmati F, Linhares JJ, Paganin VA, Gonzalez ER. Nb as an influential element for increasing the CO tolerance of PEMFC catalysts [Internet]. Journal of Applied Electrochemistry. 2013 ; 43( 8): 817-827.Available from: http://dx.doi.org/10.1007/s10800-013-0572-z

    Referências citadas na obra
    Ellis MW (2001) Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc IEEE 89:1808–1818
    Thomas CE (2008) Fuel cell and battery electric vehicles compared H2Gen Innovations, Inc. Alexandria, Virginia. http://www1.eere.energy.gov/hydrogenandfuelcells/education/pdfs/thomas_fcev_vs_battery_evs.pdf . Accessed 15 Oct 2012
    His S (2003) Hydrogen: an energy vector for the future? Panorama 2004
    Wurster R, Schindler J. (2010) Solar and wind energy coupled with electrolysis and fuel cells. Handbook of fuel cells, John Wiley & Sons, West Sussex, UK
    Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 15:39–49
    Xie D, Zhang E, Li R, Zhang Y (2012) Syngas CO cleaning for fuel cell applications by preferential oxidation: catalyst development and reactor design. Int J Low-Carbon Tech doi: 10.1093/ijlct/cts056
    Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998
    Ciapina EG, Gonzalez ER (2009) Investigation of the electro-oxidation of CO on Pt-based carbon supported catalysts (Pt75Sn25/C, Pt65Ru35/C and Pt/C) by electrochemical impedance spectroscopy. J Electroanal Chem 626:130–142
    Nepel TCM, Lopes PP, Paganin VA, Ticianelli EA (2013) CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: a mass spectrometry investigation. Electrochim Acta 88:217–224
    Pereira LGS, dos Santos FR, Pereira ME, Paganin VA, Ticianelli EA (2006) CO tolerance effects of tungsten-based PEMFC anodes. Electrochim Acta 51:4061–4066
    Santiago EI, Giz MJ, Ticianelli EA (2003) Studies of carbon monoxide oxidation on carbon-supported platinum–osmium electrocatalysts. J Solid State Electrochem 7:607–613
    Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200°C. J Electrochem Soc 150:A1599–A1605
    Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K-T, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843
    Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications. J Electrochem Soc 159:F194–F202
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362
    Papageorgopoulos DC, Keijzer M, de Bruijin FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204
    Ueda A, Yamada Y, Ioroi T, Fujiwara N, Yauda K, Miyazaki Y, Kobayashi T (2003) Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaO x and NbO x . Catal Today 84:223–229
    Konopka DA, Li M, Artyushkova K, Marinkovic N, Sasaki K, Adzic R, Ward TL, Atanassov P (2011) Platinum supported on NbRuyOz as electrocatalyst for ethanol oxidation in acid and alkaline fuel cells. J Phys Chem C 115:3043–3056
    Rocha TA, Linares JJ, Colmati F, Ciapina EG, González ER (2012) Electrocatalytic activity of platinum–niobium nanoparticles for ethanol oxidation. J Electrochem Soc 159:F650–F658
    Orilall MC, Matsumoto F, Zhou Q, Sai H, Abruña HD, DiSalvo FJ, Wiesner U (2009) One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide–carbon composites for fuel cell electrodes. J Am Chem Soc 131:9389–9395
    Justin P, Hari Krishna Charan P, Ranga Rao G (2010) High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media. Appl Catal B: Environ 100:510–515
    Aranda DAG, Ramos AD, Passos FB, Schmal M (1996) Characterization and dehydrogenation activity of Pt/Nb2O5 catalysts. Catal Today 28:119–125
    Passos FB, Aranda DAG, Soares RR, Schmal M (1998) Effect of preparation method on the properties of Nb2O5 promoted platinum catalysts. Catal Today 43:3–9
    Schmal M, Aranda DAG, Soares RR, Noronha FB, Frydman A (2000) A study of the promoting effect of noble metal addition on niobia and niobia alumina catalysts. Catal Today 57:169–176
    Guerrero S, Miller JT, Wolf EE (2007) Activity and selectivity control by niobium for the preferential oxidation of co on pt supported catalysts. Appl Catal A 328:27–34
    Uchijima T (1996) SMSI effect in some reducible oxides including niobia. Catal Today 28:105–117
    Marques P, Ribeiro NFP, Schmal M, Aranda DAG, Souza MMVM (2006) Selective CO oxidation in the presence of H2 over Pt and Pt–Sn catalysts supported on niobia. J Power Sources 158:504–508
    Zhang L, Wang L, Holt CMB, Zahiri B, Li Z, Malek K, Navessin T, Eikerling MH, Mitlin D (2012) Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy Environ Sci 5:6156–6172
    Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235
    Bauer A, Hui R, Ignaszak A, Zhang J, Jones DJ (2012) Application of a composite structure of carbon nanoparticles and Nb–TiO2 nanofibers as electrocatalyst support for PEM fuel cells. J Power Sources 210:15–20
    Sun S, Zhang G, Sun X, Cai M, Ruthkosky M (2012) Highly stable and active Pt/Nb-TiO2 carbon-free electrocatalyst for proton exchange membrane fuel cells. J Nanotechnol 2012:8
    Bauer A, Chevallier L, Hui R, Cavaliere S, Zhang J, Jones D, Rozière J (2012) Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim Acta 77:1–7
    Bonakdarpour A, Tucker RT, Fleischauer MD, Beckers NA, Brett MJ, Wilkinson DP (2012) Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts. Electrochim Acta 85:492–500
    Wang Y-J, Wilkinson DP, Guest A, Neburchilov V, Baker R, Nan F, Botton GA, Zhang J (2013) Synthesis of Pd and Nb–doped TiO2 composite supports and their corresponding Pt–Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction. J Power Sources 221:232–241
    Sasaki K, Zhang L, Adzic RR (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10:159–167
    Senevirathne K, Hui R, Campbell S, Ye S, Zhang J (2012) Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochim Acta 59:538–547
    Pinheiro ALN, Oliveira-Neto A, de Souza EC, Perez J, Paganin VA, Ticianelli EA, Gonzalez ER (2003) Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon. J New Mater Electrochem Sys 6:1–8
    Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124:59–64
    Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2011) Poly(2,5-benzimidazole) membranes: physico-chemical characterization and high temperature PEMFC application. ECS Trans 41:1579–1593
    Kai T, Matsumura T, Takahashi T (1992) The effect of support structure on CO2 hydrogenation over a rhodium catalyst supported on niobium oxide. Catal Lett 16:129–135
    Alquier C, Vandenborre MT, Henry M (1986) Synthesis of niobium pentoxide gels. J Non-Cryst Solids 79:383–395
    Therwil K, Hooper J (1964) Process for the manufacture of niobium pentoxide or tantalum pentoxide. US Patent 3,133,788
    Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599:221–232
    Li H, Lee K, Zhang J (2008) Electrocatalytic H2 oxidation reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Fundamentals and applications, 1st edn. Springer, London, p 145
    Vidaković T (2005) Kinetics of methanol electrooxidation on PtRu catalysts in a membrane electrode assembly. Doctorate Thesis. Otto-von-Guericke-Universität Magdeburg
    Chun H-J, Kim DB, Lim D-H, Lee W-D, Lee H-I (2010) A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization. Int J Hydrogen Energy 35:6399–6408
    Birss VI, Chang M, Segal J (1993) Platinum oxide film formation-reduction: an in situ mass measurement study. J Electroanal Chem 355:181–191
    Modestov AD, Tarasevich MR, Filimonov VY, Davydova ES (2010) CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole–H3PO4 membrane. Electrochim Acta 55:6073–6080
    Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394
    Aranda DAG, Schmal M (1997) Ligand and geometric effects on Pt/Nb2O5 and Pt–Sn/Nb2O5 catalysts. J Catal 171:398–405