Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11 (2013)

  • Authors:
  • USP affiliated authors: MUI, TSAI SIU - CENA
  • USP Schools: CENA
  • DOI: 10.1007/s10482-013-9935-z
  • Subjects: BACILLUS GRAM-POSITIVOS; GENES; PEPTÍDEOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10482-013-9935-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LEÃES, Fernanda Leal; VELHO, Renata Voltolini; CALDAS, Danielle Gregorio Gomes; et al. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek, Dordrecht, v. 104, p. 149–154, 2013. DOI: 10.1007/s10482-013-9935-z.
    • APA

      Leães, F. L., Velho, R. V., Caldas, D. G. G., Pinto, J. V., Tsai, S. M., & Brandelli, A. (2013). Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek, 104, 149–154. doi:10.1007/s10482-013-9935-z
    • NLM

      Leães FL, Velho RV, Caldas DGG, Pinto JV, Tsai SM, Brandelli A. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek. 2013 ; 104 149–154.
    • Vancouver

      Leães FL, Velho RV, Caldas DGG, Pinto JV, Tsai SM, Brandelli A. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek. 2013 ; 104 149–154.

    Referências citadas na obra
    Aasen IM, Moretro T, Katla T, Axelsson L, Storro L (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53:159–166
    Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603
    Caldeira AT, Feio SS, Arteiro JMS, Coelho AV, Roseiro JC (2008) Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 104:808–816
    Caldeira AT, Arteiro JMS, Coelho AV, Roseiro JC (2011) Combined use of LC-ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051. Process Biochem 46:1738–1746
    Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186
    Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412
    Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445
    Fickers P, Leclère V, Guez JS, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC 6633. Res Microbiol 159:449–457
    Guez JS, Müller CH, Danze PM, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC 6633. J Biotechnol 134:121–126
    Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698
    Huang T, Geng H, Miyapuran VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191:5690–5696
    Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166
    Kawulka KE, Sprules T, Diaper CM, Randy MW, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtillis with unusual sulfur to a-carbon cross-links: formation and reduction of a thio-α-amino acid derivates. Biochemistry 43:3385–3395
    Leães FL, Vanin NG, Sant’Anna V, Brandelli A (2011) Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11. Food Bioprocess Technol 4:822–828
    Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalban-López M, Valdivia E, Martínez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22
    Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World J Microbiol Biotechnol 24:641–646
    Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125
    Peixoto SB, Cladera-Olivera F, Daroit DJ, Brandelli A (2011) Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish. Aquac Res 42:887–891
    Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66
    Roongsawang N, Washio K, Morikawa M (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172
    Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857
    Stein T (2008) Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lanthibiotic-producing bacteria. Rapid Commun Mass Spectr 22:1146–1152
    Stein T, Düsterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353
    Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074
    Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273
    Volpon L, Tsan P, Majer Z, Vass E, Hollósi M, Noguéra V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A Mol Biomol Spectrosc 67:1374–1381
    Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47:272–277
    Zheng G, Hehn R, Zuber P (2000) Mutational analysis of sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–3273