Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The geometric exponential Poisson distribution (2013)

  • Authors:
  • USP affiliated authors: CANCHO, VICENTE GARIBAY - ICMC ; ORTEGA, EDWIN MOISES MARCOS - ESALQ
  • USP Schools: ICMC; ESALQ
  • DOI: 10.1007/s10260-013-0230-y
  • Subjects: ESTATÍSTICA; ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10260-013-0230-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s10260-013-0230-y (Fonte: Unpaywall API)

    Título do periódico: Statistical Methods & Applications

    ISSN: 1618-2510,1613-981X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Statistical Methods and Applications

    ISSN: 1618-2510

    Citescore - 2017: 0.68

    SJR - 2017: 0.466

    SNIP - 2017: 0.613


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2417499-10PROD 2417499
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NADARAJAH, Saralees; CANCHO, Vicente Garibay; ORTEGA, Edwin Moisés Marcos. The geometric exponential Poisson distribution. Statistical Methods and Applications, Heidelberg, Springer, v. 22, n. 3, p. 355-380, 2013. Disponível em: < http://dx.doi.org/10.1007/s10260-013-0230-y > DOI: 10.1007/s10260-013-0230-y.
    • APA

      Nadarajah, S., Cancho, V. G., & Ortega, E. M. M. (2013). The geometric exponential Poisson distribution. Statistical Methods and Applications, 22( 3), 355-380. doi:10.1007/s10260-013-0230-y
    • NLM

      Nadarajah S, Cancho VG, Ortega EMM. The geometric exponential Poisson distribution [Internet]. Statistical Methods and Applications. 2013 ; 22( 3): 355-380.Available from: http://dx.doi.org/10.1007/s10260-013-0230-y
    • Vancouver

      Nadarajah S, Cancho VG, Ortega EMM. The geometric exponential Poisson distribution [Internet]. Statistical Methods and Applications. 2013 ; 22( 3): 355-380.Available from: http://dx.doi.org/10.1007/s10260-013-0230-y

    Referências citadas na obra
    Adamidis A, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39:35–42
    Barreto-Souza W, Cribari-Neto F (2009) A generalization of the exponential-Poisson distribution. Stat Probab Lett 79:2493–2500
    Conti M, Gregori E, Panzieri F (1999) Load distribution among replicated web servers: a QoS-based approach. ACM SIGMETRICS Perform Eval Rev 27:12–19
    Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–898
    Elhai JD, Calhoun PS, Ford JD (2008) Statistical procedures for analyzing mental health services data. Psychiatry Res 160:129–136
    Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31:497–512
    Fricker C, Gast N, Mohamed H (2012) Mean field analysis for inhomogeneous bike sharing systems. In: Proceedings of the 23rd international meeting on probabilistic, combinatorial, and asymptotic methods for the analysis of algorithms, pp 365–376
    Ginebra J, Puig X (2010) On the measure and the estimation of evenness and diversity. Comput Stat Data Anal 54:2187–2201
    Kuş C (2007) A new lifetime distribution. Comput Stat Data Anal 51:4497–4509
    Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York
    Maller RA, Zhou X (1995) Testing for the presence of immune or cured individuals in censored survival data. Biometrics 51:1197–1205
    Ortega EMM, Cordeiro GM, Hashimoto EM (2011) A log-linear regression model for the beta-Weibull distribution. Commun Stat Simul Comput 40:1206–1235
    Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, volumes 1, 2 and 3. Gordon and Breach Science, Amsterdam
    R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria
    Silva RB, Barreto-Souza W, Cordeiro GM (2010) A new distribution with decreasing, increasing and upside-down bathtub failure rate. Comput Stat Data Anal 54:935–944
    Singh H, Misra N (1994) On redundancy allocations in systems. J Appl Probab 31:1004–1014
    van der Heijden PGM, Bustami R, Cruyff MJLF, Engbersen G, van Houwelingen HC (2003) Point and interval estimation of the population size using the truncated Poisson regression model. Stat Model 3:305–322
    Xu S, Hu Z (2011) Mapping quantitative trait loci using the MCMC procedure in SAS. Heredity 106:357–369