Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta) (2013)

  • Authors:
  • USP affiliated authors: HO, FANLY FUNGYI CHOW - IB ; OLIVEIRA, MARIANA CABRAL DE - IB
  • USP Schools: IB; IB
  • DOI: 10.1007/s10811-013-0005-8
  • Subjects: ÓXIDO NÍTRICO; ENZIMAS OXIRREDUTORAS; RHODOPHYTA; MACROALGAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10811-013-0005-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10811-013-0005-8 (Fonte: Unpaywall API)

    Título do periódico: Journal of Applied Phycology

    ISSN: 0921-8971,1573-5176



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Applied Phycology

    ISSN: 0921-8971

    Citescore - 2017: 2.59

    SJR - 2017: 0.784

    SNIP - 2017: 0.996


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CHOW, Fungyi; PEDERSÉN, Marianne; OLIVEIRA, Mariana Cabral de. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). Journal of Applied Phycology, Dordrecht, 2013. Disponível em: < http://dx.doi.org/10.1007/s10811-013-0005-8 > DOI: 10.1007/s10811-013-0005-8.
    • APA

      Chow, F., Pedersén, M., & Oliveira, M. C. de. (2013). Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). Journal of Applied Phycology. doi:10.1007/s10811-013-0005-8
    • NLM

      Chow F, Pedersén M, Oliveira MC de. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta) [Internet]. Journal of Applied Phycology. 2013 ;Available from: http://dx.doi.org/10.1007/s10811-013-0005-8
    • Vancouver

      Chow F, Pedersén M, Oliveira MC de. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta) [Internet]. Journal of Applied Phycology. 2013 ;Available from: http://dx.doi.org/10.1007/s10811-013-0005-8

    Referências citadas na obra
    Basra A, Dhawan AK, Goyal SS (2002) DCMU inhibits in vivo nitrate reduction in illuminated barley (C3) leaves but not in maize (C4): a new mechanism for the role of light? Planta 215:855–861
    Bassham JA, Larsen PO, Cornwell AL (1981) Relationships between nitrogen metabolism and photosynthesis. In: Bewley JD (ed) Nitrogen and carbon metabolism. Development in plant and soil science. Dr. W. Junk, London, pp 135–163
    Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278
    Buschmann AH, Westermeier R, Retamales CA (1995) Cultivation of Gracilaria on the sea-bottom in southern Chile: a review. J Appl Phycol 7:291–301
    Chow F, Oliveira MC, Pédersem M (2004) In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J Plant Physiol 161:769–776
    Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen-dioxide to nitric-oxide by carotenoids. Environ Health Persp 102:460–462
    Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478
    Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395
    Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588
    Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ (2002) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212
    Du S, Zhang Y, Lin X, Wang Y, Tang C (2008) Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ 31:195–204
    Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333
    Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contr Mar Sci Austin 15:1–228
    García-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure. Is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26
    Givan CV, Joy KW, Kleczkoski LA (1988) A decade of photorespiratory nitrogen cycling. Trends Biochem Sci 13:433–437
    Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism on plant and algal cells. Annu Rev Plant Physiol Mol Biol 45:577–607
    Jansson EÅ, Huang L, Malkey R, Govoni M, Nihlén C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO (2008) A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4:411–417
    Jin CW, Du ST, Zhang YS, Lin XY, Tang CX (2009) Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann Bot 104:9–17
    Kleczkowski LA (1994) Inhibitors of photosynthetic enzymes/carriers and metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:339–367
    Klepper L (1990) Comparison between NOx evolution mechanisms of wild-type and NR1 mutant soybean leaves. Plant Physiol 93:26–32
    Klepper L (1991) NOx evolution by soybean leaves treated with salicylic-acid and selected derivates. Pestic Biochem Phys 39:43–48
    Lacza Z, Pankotai E, Csordás A, Gero D, Kiss L, Horváth EM, Kollai M, Busija DW, Szabó C (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14:162–168
    Lea P, Blackwell RD (1992) The role of amino acid metabolism in photosynthesis. In: Singh BK, Shannon JC, Flores H (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 98–110
    Leshesm YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159
    Li X, Oaks A (1994) Induction and turnover of nitrate reductase in Zea mays. Plant Physiol 106:1145–1149
    Mallick N, Rai LC, Mohn FH, Soeder CJ (1999) Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabena doliolum. Chemosphere 39:1601–1610
    Mazur BJ, Falco SC (1989) The development of herbicide resistant crops. Annu Rev Plant Physiol Plant Mol Biol 40:441–470
    McDonald LJ, Murad F (1995) Nitric oxide and cGMP signaling. Adv Pharmacol 34:263–276
    Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth Res 83:181–189
    Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31:597–638
    Nishimura H, Hayamizu T, Yanagisawa Y (1986) Reduction of NO2 to NO by rush and other plants. Environ Sci Technol 20:413–416
    Provan F, Lillo C (1999) Photosynthetic post-translational activation of nitrate reductase. J Plant Physiol 154:605–609
    Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110
    Rosales EP, Iannone MF, Groppa MD, Benavides MP (2011) Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 49:124–130
    Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297
    Sandmann G, Böger P (1986) Sites of herbicide inhibition at the photosynthetic apparatus. In: Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology, vol 19. Springer, Berlin, pp 596–602
    Syrett PJ (1981) Nitrogen metabolism of microalgae. In: Platt T (ed) Physiological bases of phytoplankton ecology. Can Bull Fish Aquat Sci 210: 182–210
    Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20
    Van Camp W, Van Montagu M, Inze D (1998) H2O2 and NO: redox signals in disease resistance. Trends Plant Sci 3:330–334
    Van Rensen JJS (1989) Herbicides interacting with photosystem II. In: Dodge AD (ed) Herbicides and plant metabolism. Cambridge University Press, Cambridge, pp 21–36
    Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol 47:726–735
    Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vivo evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92
    Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129
    Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Englewood Cliffs