Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry (2013)

  • Authors:
  • USP affiliated authors: GOMBERT, ANDREAS KAROLY - EP
  • USP Schools: EP
  • DOI: 10.1007/s10482-013-0030-2
  • Subjects: ETANOL (RENDIMENTO;PRODUÇÃO); FERMENTAÇÃO INDUSTRIAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10482-013-0030-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology

    ISSN: 0003-6072

    Citescore - 2017: 1.87

    SJR - 2017: 0.834

    SNIP - 2017: 0.829


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DELLA BIANCA, Bianca Eli; GOMBERT, Andreas Karoly. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek, Países Baixos, Springer Nature, 2013. DOI: 10.1007/s10482-013-0030-2.
    • APA

      Della Bianca, B. E., & Gombert, A. K. (2013). Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek. doi:10.1007/s10482-013-0030-2
    • NLM

      Della Bianca BE, Gombert AK. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek. 2013 ;
    • Vancouver

      Della Bianca BE, Gombert AK. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek. 2013 ;

    Referências citadas na obra
    Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biot 36(8):1085–1091. doi: 10.1007/s10295-009-0592-1
    Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 82(4):340–349. doi: 10.1002/Jctb.1676
    Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund M-F (2009) Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 100(14):3674–3677. doi: 10.1016/j.biortech.2009.02.057
    Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270. doi: 10.1101/gr.091777.109
    Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357. doi: 10.1038/nbt1297-1351
    Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer R, Basso L, de Amorim H, de Oliveira A, Davis R, Ronaghi M, Gharizadeh B, Stambuk B (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genome 287(6):485–494. doi: 10.1007/s00438-012-0695-7
    Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163. doi: 10.1111/j.1567-1364.2008.00428.x
    Basso LC, Basso TO, Rocha SN (2011) Ethanol production in Brazil: The industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production. InTech, Rijeka, pp 85–100
    Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122(1–2):188–195. doi: 10.1016/j.ijfoodmicro.2007.11.083
    Blomberg A (1997) The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon. Yeast 13(6):529–539. doi: 10.1002/(SICI)1097-0061(199705)13:6<529::AIDYEA103>3.0.CO;2-H
    Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. doi: 10.1371%2Fjournal.pgen.1001287
    Bravim F, Palhano F, Fernandes A, Fernandes P (2010) Biotechnological properties of distillery and laboratory yeasts in response to industrial stresses. J Ind Microbiol Biotechnol 37(10):1071–1079. doi: 10.1007/s10295-010-0755-0
    Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira KJ, DeLucia E (2012) Ethanol from sugarcane in Brazil: a ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4(2):119–126. doi: 10.1111/j.1757-1707.2011.01122.x
    Carrasco P, Querol A, del Olmo M (2001) Analysis of the stress resistance of commercial wine yeast strains. Arch Microbiol 175(6):450–457. doi: 10.1007/s002030100289
    Ciesarová Z, Smogrovicová D, Dömény Z (1996) Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol (Praha) 41(6):485–488
    da Silva-Filho EA, de Melo WF, Antunes DF, dos Santos SKB, Resende AD, Simoes DA, De Morais MA Jr (2005) Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32(10):481–486. doi: 10.1007/s10295-005-0027-6
    Daran-Lapujade P, Daran JM, Luttik MAH, Almering MJH, Pronk JT, Kotter P (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789–792. doi: 10.1111/j.1567-1364.2009.00530.x
    de Amorim-Neto HB, Yohannan BK, Bringhurst TA, Brosnan JM, Pearson SY, Walker JW, Walker GM (2009) Evaluation of a Brazilian fuel alcohol yeast strain for scotch whisky fermentations. J Inst Brew 115(3):198–207
    de Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109(1):116–127. doi: 10.1111/j.1365-2672.2009.04633.x
    Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991. doi: 10.1007/s00253-012-4631-x
    Dickinson JR, Schweizer M (2004) The metabolism and molecular physiology of Saccharomyces cerevisiae, 2nd edn. Taylor & Francis, London
    Dorta C, de Oliva-Neto P, de Abreu-Neto MS, Nicolau-Junior N, Nagashima AI (2006) Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22(2):177–182. doi: 10.1007/s11274-005-9016-1
    Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G (2012) Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22(5):908–924. doi: 10.1101/gr.130310.111
    Elsztein C, de Lucena RM, de Morais MA Jr (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12:38. doi: 10.1186/1471-2199-12-38
    Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63(6):734–741. doi: 10.1007/s00253-003-1414-4
    Gomar-Alba M, Jiménez-Martí E, del Olmo M (2012) The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress. BMC Mol Biol 21(13):19. doi: 10.1186/1471-2199-13-19
    Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372. doi: 10.1128/mmbr.66.2.300-372.2002
    Ivorra C, Pérez-Ortín JE, del Olmo Ml (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts: a molecular study. Biotechnol Bioeng 64(6):698–708. doi: 10.1002/(SICI)1097-0290(19990920)64:6<698::AID-BIT9>3.0.CO;2-Z
    Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, Del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211–220. doi: 10.1016/j.ijfoodmicro.2010.12.023
    Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780(6):892–898. doi: 10.1016/j.bbagen.2008.03.008
    Lewis JG, Learmonth RP, Attfield PV, Watson K (1997) Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 18(1):30–36
    Llanos R, Fernández-Espinar MT, Querol A (2006) A comparison of clinical and food Saccharomyces cerevisiae isolates on the basis of potential virulence factors. Antonie Van Leeuwenhoek J Microb 90(3):221–231. doi: 10.1007/s10482-006-9077-7
    Locher G, Hahnemann U, Sonnleitner B, Fiechter A (1993) Automatic bioprocess control. 4. A prototype batch of Saccharomyces cerevisiae. J Biotechnol 29(1–2):57–74. doi: 10.1016/0168-1656(93)90040-T
    Luttik MAH, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT (2000) The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182(24):7007–7013. doi: 10.1128/jb.182.24.7007-7013.2000
    Macedo IC (2007) Situação atual e perspectivas do etanol. Estud Av 21(59):157–165. doi: 10.1590/S0103-40142007000100012
    Massera A, Assof M, Sturm ME, Sari S, Jofré V, Cordero-Otero R, Combina M (2012) Selection of indigenous Saccharomyces cerevisiae strains to ferment red musts at low temperature. Ann Microbiol 62(1):367–380. doi: 10.1007/s13213-011-0271-0
    Mensonides FIC, Schuurmans JM, de Mattos MJT, Hellingwerf KJ, Brul S (2002) The metabolic response of Saccharomyces cerevisiae to continuous heat stress. Mol Biol Rep 29(1):103–106. doi: 10.1023/A:1020392805411
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi: 10.1021/ac60147a030
    Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 113(1):35–43
    Netto LES (2006) A rapid screen for determination of the protective role of antioxidant proteins in yeast. In: Harris JR, Graham J, Rickwood D (eds) Cell biology protocols, vol 6. John Wiley & Sons Ltd, Chichester, pp 255–258
    Nielsen J, Villadsen J, Lidén G (2003) Bioreaction engineering principles, 2nd edn. Kluwer/Plenum, New York
    Olsson L, Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15(12):517–522. doi: 10.1016/S0167-7799(97)01136-0
    Ough CS, Fong D, Amerine MA (1972) Glycerol in wine: determination and some factors affecting. Am J Enol Vitic 23(1):1–5
    Páez J, Córdova E, Soto Ó, Barrio E, Belloch C, Rutiaga-Quiñones OM (2011) Saccharomyces cerevisiae strains with robust responses to fermentation stresses isolated from the alcoholic fermentation of Agave duranguensis musts. Afr J Microbiol Res 5(8):865–871
    Park H, Hwang Y-S (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46(5):542–548. doi: 10.1007/s12275-008-0053-y
    Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2011) Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J Biosci Bioeng 112(2):130–136. doi: 10.1016/j.jbiosc.2011.03.022
    Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249–17255. doi: 10.1074/jbc.M910016199
    Schwab S, Teixeira KRS, Baldani JI (2008) Preparo de caldo de cana-de-açúcar para utilização em meio de cultura de Gluconacetobacter diazotrophicus. Embrapa Agrobiologia, Seropédica, Comunicado Técnico 114
    Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19(12):2271–2278. doi: 10.1101/gr.094276.109
    Sumner ER, Avery SV (2002) Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148(2):345–351
    Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22(5):975–984. doi: 10.1101/gr.131698.111
    US Environmental Protection Agency (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. http://www.epa.gov/oms/renewablefuels/420r10006.pdf . Accessed 10 June 2010
    van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin MLF, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microbiol Technol 26(9–10):706–714
    van Leeuwen M, Buijs NAA, Canelas AB, Oudshoorn A, Heijnen JJ, van Gulik WM (2009) The Hagen-Poiseuille pump for parallel fed-batch cultivations in microbioreactors. Chem Eng Sci 64(8):1877–1884. doi: 10.1016/j.ces.2009.01.015
    Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517. doi: 10.1002/yea.320080703
    Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487. doi: 10.1016/S0167-7799(99)01384-0
    Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1(2):163–173. doi: 10.1128/ec.1.2.163-173.2002
    Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey
    Zuzuarregui A, del Olmo ML (2004) Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie van Leeuwenhoek J Microb 85(4):271–280