Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Multimodality and flexibility of stochastic gene expression (2013)

  • Authors:
  • USP affiliated authors: RAMOS, ALEXANDRE FERREIRA - EACH ; FORGER, FRANK MICHAEL - IME ; HORNOS, JOSE EDUARDO MARTINHO - IFSC
  • USP Schools: EACH; IME; IFSC
  • DOI: 10.1007/s11538-013-9909-3
  • Subjects: PROCESSOS ESTOCÁSTICOS; CÓDIGO GENÉTICO; MODELOS MATEMÁTICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11538-013-9909-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11538-013-9909-3 (Fonte: Unpaywall API)

    Título do periódico: Bulletin of Mathematical Biology

    ISSN: 0092-8240,1522-9602



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Bulletin of Mathematical Biology

    ISSN: 0092-8240

    Citescore - 2017: 1.47

    SJR - 2017: 0.717

    SNIP - 2017: 0.944


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89021553PROD021553
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      INNOCENTINI, Guilherme da Costa Pereira; FORGER, Frank Michael; RAMOS, Alexandre Ferreira; RADULESCU, Ovidiu; HORNOS, José Eduardo Martinho. Multimodality and flexibility of stochastic gene expression. Bulletin of Mathematical Biology, New York, Springer, v. 75, n. 12, p. 2600-2630, 2013. Disponível em: < http://dx.doi.org/10.1007/s11538-013-9909-3 > DOI: 10.1007/s11538-013-9909-3.
    • APA

      Innocentini, G. da C. P., Forger, F. M., Ramos, A. F., Radulescu, O., & Hornos, J. E. M. (2013). Multimodality and flexibility of stochastic gene expression. Bulletin of Mathematical Biology, 75( 12), 2600-2630. doi:10.1007/s11538-013-9909-3
    • NLM

      Innocentini G da CP, Forger FM, Ramos AF, Radulescu O, Hornos JEM. Multimodality and flexibility of stochastic gene expression [Internet]. Bulletin of Mathematical Biology. 2013 ; 75( 12): 2600-2630.Available from: http://dx.doi.org/10.1007/s11538-013-9909-3
    • Vancouver

      Innocentini G da CP, Forger FM, Ramos AF, Radulescu O, Hornos JEM. Multimodality and flexibility of stochastic gene expression [Internet]. Bulletin of Mathematical Biology. 2013 ; 75( 12): 2600-2630.Available from: http://dx.doi.org/10.1007/s11538-013-9909-3

    Referências citadas na obra
    Ackers, G. K., Johnson, A. D., & Shea, M. A. (1982). Quantitative model for gene regulation by λ phage repressor. Proc. Natl. Acad. Sci. USA, 79, 1129–1133.
    Arkin, A., Ross, J., & McAdams, H. H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics, 149, 1633–1648.
    Cai, L., Friedman, N., & Xie, X. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature, 440(7082), 358–362.
    Cases, I., & de Lorenzo, V. (2005). Promoters in the environment: transcriptional regulation in its natural context. Nat. Rev. Microbiol., 3, 105–118.
    Chen, H., Monte, E., Parvatiyar, M. S., Rosa-Garrido, M., Franklin, S., & Vondriska, T. M. (2012). Structural considerations for chromatin state models with transcription as a functional readout. FEBS Lett., 586, 3548–3554.
    Coulon, A., Gandrillon, O., & Beslon, G. (2010). On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Syst. Biol., 4(1), 2–18.
    Delbrück, M. (1940). Statistical fluctuations in autocatalytic reactions. J. Chem. Phys., 8, 120–124.
    Elf, J., Li, G., & Xie, X. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828), 1191–1194.
    Escolar, L., Pérez-Martín, J., & de Lorenzo, V. (1999). Opening the iron box: transcriptional metalloregulation by the fur protein. J. Bacteriol., 181, 6223–6229.
    Ferguson, M., Le Coq, D., Jules, M., Aymerich, S., Radulescu, O., Declerck, N., & Royer, C. (2012). Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc. Natl. Acad. Sci., 109(1), 155–160.
    Garcia, H., & Phillips, R. (2011). Quantitative dissection of the simple repression input–output function. Proc. Natl. Acad. Sci., 108(29), 12,173–12,178.
    Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of genetic toggle switch in Escherichia coli. Nature, 403, 339–342.
    Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.
    Goss, P., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc. Natl. Acad. Sci., 95(12), 6750–6755.
    Hasty, J., Pradines, J., Dolnik, M., & Collins, J. J. (2000). Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA, 97, 2075–2080.
    Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136(23), 3853–3862.
    Janssens, H., Hou, S., Jaeger, J., Kim, A. R., Myasnikova, E., Sharp, D., & Reinitz, J. (2006). Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat. Genet., 38, 1159–1165.
    Kepler, T., & Elston, T. (2001). Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81(6), 3116–3136.
    Kierzek, A., Zaim, J., & Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol. Chem., 276, 8165–8172.
    Kirkilionis, M., Janus, U., & Sbano, L. (2011). Multi-scale genetic dynamic modelling ii: application to synthetic biology. Theory Biosci., 130(3), 183–201.
    McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, 94, 814–819.
    McAdams, H. H., & Arkin, A. (1998). Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct., 27, 199–224.
    Metzler, R., & Wolynes, P. G. (2002). Number fluctuations and the threshold model of kinetic switches. Chem. Phys., 284, 469–479.
    Monod, J., & Jacob, F. (1961). Genetic regulatory mechanisms in synthesis of proteins. J. Mol. Biol., 3, 318–356.
    Muller-Hill, B. (1996). The lac operon: a short history of a genetic paradigm. Berlin: de Gruyter.
    Murphy, K. F., Balázsi, G., & Collins, J. J. (2007). Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA, 104, 12,726–12,731.
    Murphy, K. F., Adams, R. M., Wang, X., Balázsi, G., & Collins, J. J. (2010). Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res., 38, 2712–2726.
    Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., & van Oudenaarden, A. (2002). Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73.
    Paulsson, J., & Ehrenberg, M. (2000). Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett., 84, 5447–5450.
    Ptashne, M. (1992). A genetic switch: phage λ and higher organisms. Cambridge: Cell Press/Blackwell.
    Raj, A., Peskin, C., Tranchina, D., Vargas, D., & Tyagi, S. (2006). Stochastic mrna synthesis in mammalian cells. PLoS Biol., 4(10), e309.
    Rao, C. V., Wolf, D. M., & Arkin, A. P. (2002). Control, exploitation and tolerance of intracellular noise. Nature, 420, 231–237.
    Saiz, L., & Vilar, J. (2008). Ab initio thermodynamic modeling of distal multisite transcription regulation. Nucleic Acids Res., 36(3), 726–731.
    Sánchez, Á., & Kondev, J. (2008). Transcriptional control of noise in gene expression. Proc. Natl. Acad. Sci., 105(13), 5081–5086.
    Sasai, M., & Wolynes, P. G. (2003). Stochastic gene expression as a many-body problem. Proc. Natl. Acad. Sci. USA, 100, 2374–2379.
    Satory, D., Gordon, A., Halliday, J., & Herman, C. (2011). Epigenetic switches: can infidelity govern fate in microbes? Curr. Opin. Microbiol., 14(2), 212–217.
    Taniguchi, Y., Choi, P., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A., & Xie, X. (2010). Quantifying e. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329(5991), 533–538.
    Thattai, M., & van Oudenaarden, A. (2001). Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA, 98, 8614–8619.
    Thattai, M., & van Oudenaarden, A. (2002). Attenuation of noise in ultrasensitives signaling cascades. Biophys. J., 82, 2943–2950.
    van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.
    Vicente, M., Chater, K. F., & de Lorenzo, V. (1999). Bacterial transcription factors involved in global regulation. Mol. Microbiol., 33, 8–17.