Ver registro no DEDALUS
Exportar registro bibliográfico



Monte Carlo study of the magnetic properties of frozen and non-interacting nanoparticles (2013)

  • Authors:
  • USP affiliated authors: CORNEJO, DANIEL REINALDO - IF
  • USP Schools: IF
  • DOI: 10.1007/s11051-013-1859-z
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s11051-013-1859-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Nanoparticle Research

    ISSN: 1388-0764

    Citescore - 2017: 1.93

    SJR - 2017: 0.528

    SNIP - 2017: 0.603

  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ARANTES, Fabiana R; CORNEJO, Daniel Reinaldo. Monte Carlo study of the magnetic properties of frozen and non-interacting nanoparticles. Journal of Nanoparticle Research, New York, Springer, v. 15, p. 1859/1-1859/10, 2013. DOI: 10.1007/s11051-013-1859-z.
    • APA

      Arantes, F. R., & Cornejo, D. R. (2013). Monte Carlo study of the magnetic properties of frozen and non-interacting nanoparticles. Journal of Nanoparticle Research, 15, 1859/1-1859/10. doi:10.1007/s11051-013-1859-z
    • NLM

      Arantes FR, Cornejo DR. Monte Carlo study of the magnetic properties of frozen and non-interacting nanoparticles. Journal of Nanoparticle Research. 2013 ; 15 1859/1-1859/10.
    • Vancouver

      Arantes FR, Cornejo DR. Monte Carlo study of the magnetic properties of frozen and non-interacting nanoparticles. Journal of Nanoparticle Research. 2013 ; 15 1859/1-1859/10.

    Referências citadas na obra
    Als-Nielsen J, Dietricht OW, Kunnmann W, Passell L (1971) Critical Behavior of the Heisenberg Ferromagnets EuQ and EuS. Phys Rev Lett 27:741–744
    Arantes FR, Figueiredo, Neto AM, Cornejo DR (2011) Magnetic behavior of 10 nm-magnetite particles diluted in lyotropic liquid crystals. J Appl Phys 109:07E315.1–07E315.3. doi: 10.1063/1.3549616
    Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D 35:R15–R42
    Berger L, Labaye Y, Tamine M, Coey JMD (2008) Ferromagnetic nanoparticles with strong surface anisotropy: spin structures and magnetization processes. Phys Rev B 77:104431.1–104431.10. doi: 10.1103/PhysRevB.77.104431
    Bertotti G (1998) Hysteresis in magnetism for physicists, materials scientists and engineers. Academic Press, San Diego
    Chen K, Ferrenberg AM, Landau DP (1993) Static critical behavior of three-dimensional classical Heisenberg models: a high-resolution Monte Carlo study. Phys Rev B 48:3249–3256
    Chen X, Sahoo S, Kleemann W, Cardoso S, Freitas PP (2004) Universal and scaled relaxation of interacting magnetic nanoparticles. Phys Rev B 70:172411.1–172411.4. doi: 10.1103/PhysRevB.70.172411
    Daou TJ, Grenèche JM, Pourroy G, Buathong S, Derory A, Ulhaq-Bouillet C, Donnio B, Guillon D, Begin-Colin S (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20:5869–5875. doi: 10.1021/cm801405n
    Demortière A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Bégin-Colin S (2011) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3:225–232. doi: 10.1039/c0nr00521e
    Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys 18:S2919–S2934. doi: 10.1088/0953-8984/18/38/S26
    Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416.1–184416.11. doi: 10.1103/PhysRevB.63.184416
    Iglesias O, Labarta A (2005) Influence of surface anisotropy on the hysteresis of magnetic nanoparticles. J Magn Magn Mater 290:738–741. doi: 10.1016/j.jmmm.2004.11.358
    Kesserwan H, Manfredi G, Bigot J-Y, Hervieux P-A (2011) Magnetization reversal in isolated and interacting single-domain nanoparticles. Phys Rev B 84:172407.1–172407.5
    Kittel C (1995) Introduction to solid state physics, 7th edn. Wiley, New York
    Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372
    Landau DP (1976) Finite-size behavior of the simple-cubic Ising lattice. Phys Rev B 14:255–262
    Landau DP, Binder K (2000) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge
    Leblanc MD, Plumer ML, Whitehead JP, Mercer JI (2010) Transition temperature and magnetic properties of the granular Ising model in two dimensions studied by Monte Carlo simulations: impact of intragrain spin structure. Phys Rev B 82:174435.1–174435.8. doi: 10.1103/PhysRevB.82.174435
    Leite VS, Figueiredo W (2006) Mean-field and Monte Carlo calculations of the equilibrium magnetic properties of uniaxial ferromagnetic particles. Phys Lett A 359:300–307. doi: 10.1016/j.physleta.2006.06.039
    Leostean C, Pana O, Turcu R, Soran ML, Macavei S, Chauvet O, Payen C (2011) Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions. J Nanopart Res 13:6181–6192. doi: 10.1007/s11051-011-0313-3
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int 46:1222–1244. doi: 10.1002/anie.200602866
    Mao Z, Chen X (2010) Magnetic relaxation in disordered exchange interacting systems with random anisotropy. Solid State Commun 150:2227–2230. doi: 10.1016/j.ssc.2010.09.038
    Mejía-López J, Mazo-Zuluaga J (2011) Energy contributions in magnetite nanoparticles: computation of magnetic phase diagram, theory, and simulation. J Nanopart Res 13:7115–7125. doi: 10.1007/s11051-011-0629-z
    Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341. doi: 10.1080/01621459.1949.10483310
    Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–495. doi: 10.1016/j.jmmm.2005.01.064
    Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotech 5:15–25. doi: 10.1038/nnano.2009.453
    Peczak P, Ferrenberg AM, Landau DP (1991) High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet. Phys Rev B 43:6087–6093
    Porto M (2002a) Effect of positional disorder in systems of ultrafine ferromagnetic particles. Eur Phys J B 26:229–234. doi: 10.1140/epjb/e20020084
    Porto M (2002b) Relative significance of particle anisotropy in systems of ultrafine ferromagnetic particles. J Appl Phys 92:6057–6061. doi: 10.1063/1.1513873
    Porto M (2005) Ordered systems of ultrafine ferromagnetic particles. Eur Phys J B 45:369–375. doi: 10.1140/epjb/e2005-00186-3
    Reiss G, Hütten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726
    Russ S, Bunde A (2011) Relaxation in ordered systems of ultrafine magnetic particles: effect of the exchange interaction. J Phys 23:126001.1–1260011. doi: 10.1088/0953-8984/23/12/126001
    Sato T, Iijima T, Seki M, Inagaki N (1987) Magnetic properties of ultrafine ferrite particles. J Magn Magn Mater 65:252–256
    Serantes D, Baldomir D, Pereiro M, Arias JE, Mateo–Mateo C, Buján-Núñez MC, Vázquez-Vázquez C, Rivas J (2008) Interplay between the magnetic field and the dipolar interaction on a magnetic nanoparticle system: a Monte Carlo study. J Non-Cryst Solids 354:5224–5226. doi: 10.1016/j.jnoncrysol.2008.07.040
    Serantes D, Baldomir D, Pereiro M, Hoppe CE, Rivadulla F, Rivas J (2010) Nonmonotonic evolution of the blocking temperature in dispersions of superparamagnetic nanoparticles. Phys Rev B 82:134433.1–134433.6. doi: 10.1103/PhysRevB.82.134433
    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853
    Srivastava CM, Srinivasan G, Nanadikar NG (1979) Exchange constants in spinel ferrites. Phys Rev B 19:499–508
    Stanley HE (1999) Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev Mod Phys 71:S358–S366
    Yang HT, Liu HL, Song NN, Du HF, Zhang XQ, Cheng ZH, Shen J, Li LF (2011) Determination of the critical interspacing for the noninteracting magnetic nanoparticle system. Appl Phys Lett 98:153112.1–153112.3. doi: 10.1063/1.3574917