Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation (2014)

  • Authors:
  • USP affiliated authors: BASSO, LUIZ CARLOS - ESALQ
  • USP Schools: ESALQ
  • DOI: DOI 10.1007/s10482-013-0063-6
  • Subjects: FERMENTAÇÃO; CANA-DE-AÇÚCAR; ETANOL; BACTÉRIAS LÁTICAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: DOI 10.1007/s10482-013-0063-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: DOI 10.1007/s10482-013-0063-6 (Fonte: Unpaywall API)

    Título do periódico: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

    ISSN: 2212-4403



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology

    ISSN: 0003-6072

    Citescore - 2017: 1.87

    SJR - 2017: 0.834

    SNIP - 2017: 0.829


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BASSO, Thiago Olitta; GOMES, Fernanda Sgarbosa; LOPES, Mario Lucio; et al. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek, Dordrecht, v. 105, n. 1, p. 169-177, 2014. Disponível em: < http://link.springer.com/article/10.1007%2Fs10482-013-0063-6 > DOI: DOI 10.1007/s10482-013-0063-6.
    • APA

      Basso, T. O., Gomes, F. S., Lopes, M. L., Amorim, H. V. de, Eggleston, G., & Basso, L. C. (2014). Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek, 105( 1), 169-177. doi:DOI 10.1007/s10482-013-0063-6
    • NLM

      Basso TO, Gomes FS, Lopes ML, Amorim HV de, Eggleston G, Basso LC. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation [Internet]. Antonie van Leeuwenhoek. 2014 ; 105( 1): 169-177.Available from: http://link.springer.com/article/10.1007%2Fs10482-013-0063-6
    • Vancouver

      Basso TO, Gomes FS, Lopes ML, Amorim HV de, Eggleston G, Basso LC. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation [Internet]. Antonie van Leeuwenhoek. 2014 ; 105( 1): 169-177.Available from: http://link.springer.com/article/10.1007%2Fs10482-013-0063-6

    Referências citadas na obra
    Alves DMG (1994) Fatores que afetam a formação de ácidos orgânicos, bem como outros parâmetros da fermentação alcoólica. MSc thesis, University of São Paulo, Piracicaba
    Amorim HV, Oliveira AJ (1982) Infecção na fermentação: como evitá-la. Álcool e Açúcar 2:12–18
    Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Kelsall, Austin GD, Kluhspies C (eds) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 39–46
    Axelsson L, Holck A, Birkeland SE, Aukrust T, Blom H (1993) Cloning and nucleotide-sequence of a gene from Lactobacillus sake lb706 necessary for sakacin-a production and immunity. Appl Environ Microbiol 59:2868–2875
    Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163
    Bayrock DP, Ingledew WM (2004) Inhibition of yeast by lactic acid bacteria in continuous culture: Nutrient depletion and/or acid toxicity? J Ind Microbiol Biotechnol 31:362–368
    Cogan TM, Jordan KN (1994) Metabolism of Leuconostoc bacteria. J Dairy Sci 77:2704–2717
    Condon S (1987) Responses of lactic-acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280
    Costa VM, Basso TO, Angeloni LHP, Oetterer M, Basso LC (2008) Production of acetic acid, ethanol and optical isomers of lactic acid by Lactobacillus strains isolated from industrial ethanol fermentations. Ciência e Agrotecnologia 32:503–509
    Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991
    Eggleston G, Legendre B, Tew T (2004) Indicators of freeze-damaged sugarcane varieties which can predict processing problems. Food Chem 87:119–133
    Eggleston G, Basso LC, de Amorim HV, Paulillo SCD, Basso TO (2007) Mannitol as a sensitive indicator of sugarcane deterioration and bacterial contamination in fuel alcohol production. Zuckerindustrie 132:33–39
    Gallo CR (1990) Determinação da microbiota bacteriana de mosto e de dornas de fermentação alcoólica. PhD thesis, University of Campinas, Campinas
    Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139
    Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Verges MC, Kleerebezem M, Hols P (2005) Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol 187:6750–6761
    Huet JM (2011) General subject 8: beet sugar processing. In: Proceedings of the 27th international commission for uniform methods of sugar analysis, Berlin, pp 77–102
    Kandler O (1983) Carbohydrate-metabolism in lactic-acid bacteria. Antonie van Leeuwenhoek J Microbiol 49:209–224
    Kandler O, Weiss N (1986) Lactobacillus. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 1209–1234
    Lucena BTL, dos Santos BM, Moreira JLS, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, Morais MA (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298–306
    Maligoy M, Mercade M, Cocaign-Bousquet M, Loubiere P (2008) Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 74:485–494
    Narendranath NV, Hynes SH, Thomas KC, Ingledew WM (1997) Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 63:4158–4163
    Oliva-Neto P, Yokoya F (1994) Evaluation of bacterial contamination in a fed-batch fermentation process. World J Microbiol Biotechnol 10:697–699
    Oliveira AJ, Gallo CR, Alcarde VE, Godoy A, Amorim HV (1996) Métodos para o controle microbiológico na produção de álcool e açúcar. Fermentec/FEALQ/ESALQ/USP, Piracicaba
    Serra GE, Cereda MP, Feres RJ, Bertozo MT, Vicente AT (1979) Contaminação da fermentação alcoólica: “floculação do fermento”. Brasil Açucareiro 93:26–31
    Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408
    Souza RB, dos Santos BM, de Fátima Rodrigues de Souza R, da Silva PK, Lucena BT, de Morais MA Jr (2012) The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. J Ind Microbiol Biotechnol 39:1645–1650
    Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278
    Steinmetz K, Buczys R, Buchholz K (1998) The quality of frost-damaged sugar beet. Zuckerindustrie 123:933–942
    Thomas KC, Hynes SH, Ingledew WI (2001) Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J Appl Microbiol 90:819–828
    Viana R, Yebra MJ, Galan JL, Monedero V, Perez-Martinez G (2005) Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res Microbiol 156:641–649
    von Weymarn N, Hujanen M, Leisola M (2002) Production of d-mannitol by hetero-fermentative lactic acid bacteria. Process Biochem 37:1207–1213
    Zago EA, Amorim HV, Basso LC, Gutierrez LE, Oliveira AJ (1989) Métodos analíticos para o controle da produção de álcool. Fermentec/CEBTEC/ESALQ/USP, Piracicaba