Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7 (2014)

  • Authors:
  • USP affiliated authors: PARRA, JOSÉ ROBERTO POSTALI - ESALQ ; AZEVEDO, JOÃO LUCIO DE - ESALQ ; PIZZIRANI-KLEINER, ALINE APARECIDA - ESALQ ; ARAUJO, WELINGTON LUIZ DE - ICB
  • USP Schools: ESALQ; ESALQ; ESALQ; ICB
  • DOI: 10.1007/s00203-014-0962-6
  • Subjects: CANA-DE-AÇÚCAR; BROCAS (INSETOS NOCIVOS); MICRORGANISMOS ENDOFÍTICOS; BACTÉRIAS; ORGANISMOS GENETICAMENTE MODIFICADOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00203-014-0962-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00203-014-0962-6 (Fonte: Unpaywall API)

    Título do periódico: J. Mater. Chem. C

    ISSN: 2050-7526,2050-7534

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença: cc0
      • Versão: publishedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc0
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Archives of Microbiology

    ISSN: 0302-8933

    Citescore - 2017: 1.74

    SJR - 2017: 0.644

    SNIP - 2017: 0.65


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100109029PC ICB BMM SEP 2014
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      QUECINE, Maria Carolina; TSUI, S; PARRA, José Roberto Postali; et al. Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Archives of Microbiology, Berlin, 2014. Disponível em: < http://link.springer.com/article/10.1007%2Fs00203-014-0962-6 > DOI: 10.1007/s00203-014-0962-6.
    • APA

      Quecine, M. C., Tsui, S., Parra, J. R. P., Azevedo, J. L. de, Pizzirani-Kleiner, A. A., & Araujo, W. L. de. (2014). Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Archives of Microbiology. doi:10.1007/s00203-014-0962-6
    • NLM

      Quecine MC, Tsui S, Parra JRP, Azevedo JL de, Pizzirani-Kleiner AA, Araujo WL de. Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7 [Internet]. Archives of Microbiology. 2014 ;Available from: http://link.springer.com/article/10.1007%2Fs00203-014-0962-6
    • Vancouver

      Quecine MC, Tsui S, Parra JRP, Azevedo JL de, Pizzirani-Kleiner AA, Araujo WL de. Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7 [Internet]. Archives of Microbiology. 2014 ;Available from: http://link.springer.com/article/10.1007%2Fs00203-014-0962-6

    Referências citadas na obra
    Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso HOS, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236. doi: 10.1139/cjm-47-3-229
    Arencibia A, Vazquez RI, Prieto D, Tellez P, Carmona ER, Coego A, Hernandez L, Delariva GA, Selmanhousein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breeding 3:247–255. doi: 10.1023/A:1009616318854
    Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93. doi: 10.1099/00207713-36-1-86
    Barboza-Corona JE, Contreras JC, Velazquez-Robledo R, Bautista-Justo M, Gomez-Ramirez M, Cruz-Camarillo R, Ibarra JE (1999) Selection of chitinolytic strains of Bacillus thuringiensis. Biotechnol Lett 21:1125–1129. doi: 10.1023/A:1005626208193
    Barboza-Corona JE, Nieto-Mazzocco E, Velazquez-Robledo R, Salcedo-Hernandez R, Bautista-Justo M, Jimenez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029. doi: 10.1128/AEM.69.2.1023- 1029.2003
    Bonaterra A, Mari M, Casalini L, Montesinos E (2003) Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int J Food Microbiol 84:93–104. doi: 10.1016/S0168-1605(02)00403-8
    Bora RS, Murty MG, Shenbagarathai R, Sekar V (1994) Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl Environ Microbiol 60:214–222
    Botelho PSM, Macedo N (2002) Cotesia flavipes para o controle de Diatraea saccharalis. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitóides e predadores. Manole, São Paulo, pp 409–425
    Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31. doi: 10.1007/BF02370096
    Cheavegatti-Gianotto A, Abreu HMC, Arruda P, Bespalhok-Filho JC, Burnquist WL, Creste S, Ciero L, Ferro JA, Figueira AVO, Filgueiras TS, Sá MFG, Guzzo EC, Hoffmann HP, Landell MGA, Macedo N, Matsuoka S, Reinach FC, Romano E, Silva WJ, Silva-Filho MC, Ulian EC (2011) Sugarcane (Saccharum x officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Tropical Plant Biol 4:62–89. doi: 10.1007/s12042-011-9068-3
    Choi YL, Gringorten JL, Belanger L, Morel L, Bourque D, Masson L, Groleau D, Miguez CB (2008) Production of an insecticidal crystal protein from Bacillus thuringiensis by the methylotroph Methylobacterium extorquens. Appl Environ Microbiol 74:5178–5182. doi: 10.1128/AEM.00598-08
    de Macedo CL, Martins ES, Pepino de Macedo LL, Santos AC, Praça LB, Góis LAB, Monnerat RG (2012) Selection and characterization of Bacillus thuringiensis efficient strains against Diatraea saccharalis (Lepidoptera: Crambidae) Pesq Agropec Bras 47:1759–1765. doi: 10.1590/S0100-204X2012001200012
    Dean DH (1984) Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis: basic principles and prospect for genetic engineering. Biotechnol Genet Eng 2:341–363. doi: 10.1080/02648725.1984.10647804
    Dinardo-Miranda LL (2008) Pragas. In: Dinardo-Mirando LL, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico, Campinas, pp 349–404
    Dinardo-Miranda LL, Anjos IA, Costa VP, Fracasso JV (2012) Resistance of sugarcane cultivars to Diatraea saccharalis. Pesq Agropec Bras 47:1–7. doi: 10.1590/S0100-204X2012000100001
    Dong Z, Canny MJ, McCully ME, Roboredo MG, Cabadilla CF, Ortega E, Rodés R (1994) A nitrogen-fixing endophyte of sugarcane stems (A new role for the apoplast). Plant Physiol 105:1139–1147. doi: 10.1104/pp.105.4.1139
    Downing KJ, Leslie G, Thomson J (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810. doi: 10.1128/AEM.66.7.2804- 2810.2000
    Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel MG (1997) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137–141. doi: 10.1038/nbt0297-137
    Fahey JW, Dimock MB, Tomasino SF, Taylor JM, Carlson PS (1991) Genetically engineered endophytes as biocontrol agents: A case study in industry. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, London, pp 401–411
    Falcão-Salles J, Demedeiros-Gitahy P, Skot L, Baldani JL (2000) Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis. Braz J Microbiol 31:155–161. doi: 10.1590/S1517-83822000000300001
    Falco MC, Silva-Filho MC (2003) Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol Bioch 41:761–766. doi: 10.1016/S0981-9428(03)00100-1
    FAOSTAT (2012) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
    Fearing PL, Brown D, Vlachos D, Meghji M, Privalle L (1997) Quantitative analysis of CryIA(b) expression in Bt maize plants, tissue and silage, and stability of expression over successive generations. Mol Breeding 3:169–176. doi: 10.1023/A:1009611613475
    Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14. doi: 10.1111/j.1574-6968.2008.01258.x
    Ge AZ, Pwster RM, Dean DH (1990) Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Echerichia coli: properties of the product. Gene 93:49–54. doi: 10.1016/0378-1119(90)90134-D
    Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW (2004) Cytological observation of cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:39–42. doi: 10.1016/S1049-9644(03)00082-3
    King EG, Hartley GG (1985) Diatraea saccharalis. In: Singh HP, Moore RF (eds) Handbook of insects rearing. Elsevier, New York, pp 265–270
    Kotze AC, O’Grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35:1013–1022. doi: 10.1016/j.ijpara.2005.03.010
    Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698. doi: 10.1094/Phyto-85-695
    Loiret FG, Ortega E, Kleiner D, Ortega-Rode P, Rode’s R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511. doi: 10.1111/j.1365-2672.2004.02329.x
    Matsuoka S, Garcia AAF, Calheiros GC (1999) Hibridação em cana de- açúcar. In: Borém A (ed) Hibridação Artificial de Plantas. Viçosa, Editora UFV, pp 221–254
    Moar WJ, Trumble J, Hice R, Backmann P (1994) Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl Environ Microbiol 60:896–902. doi:0099-2240/94/$04.00+0
    Nunez WJ, Colmer AR (1968) Differentiation of Aerobacter-Klebsiella isolated from sugarcane. Appl Microbiol 16:1875–1878
    Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530. doi: 10.1046/j.1365-3059.2000.00468.x
    Parra JRP (1996) Técnicas de criação de insetos para programas de controle biológico, 3rd edn. FEALQ, Piracicaba
    Parra JRP, Botelho PSM, Pinto AFD (2010) Controle biológico de pragas como um componente chave para a produção sustentável de cana-de-açúcar. In: Barboza-Cortez LA (ed) Bioetanol de cana-de-açucar: P&D para sustentabilidade e produtividade. Blucher, São Paulo, pp 441–450
    Perlak FJ, Fuchs RL, Dean DA, Mcpherson S, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. P Natl Acad Sci USA 88:3324–3328. doi: 10.1073/pnas.88.8.3324
    Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol R 71:255–281. doi: 10.1128/MMBR.00034-06
    Procópio REL, Araújo WL, Maccheroni-Jr W, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422. doi: 10.4238/vol8-4gmr691
    Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518. doi: 10.1128/AEM.00836-12
    Ragev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis. Appl Environ Microbiol 62:3581–3586
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York
    Theoduloz C, Vega A, Salazar M, Gonzalez E, Meza-Basso L (2003) Expression of a Bacillus thuringiensis delta-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J Appl Microbiol 94:375–381. doi: 10.1046/j.1365-2672.2003.01840.x
    Tomasino SF, Leister RT, Dimock MB, Beach RM, Kelly JL (1995) Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA (c) of Bacillus thuringiensis against European corn borer in field corn. Biol Control 5:442–448. doi: 10.1006/bcon.1995.1053
    Torres AR, Araújo WL, Cursino L, Rossetto PB, Mondin M, Hungria M, Azevedo JL (2013) Colonization of Madagascar periwinkle (Catharanthus roseus), by endophytes encoding gfp marker. Arch Microbiol 195:483–489. doi: 10.1007/s00203-013-0897-3
    Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the delta-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xily subsp. cyondontis. Appl Environ Microbiol 57:3522–3528
    Udayasurian V, Nakamura A, Masaki H, Uozumi T (1995) Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonizing Azospirillum. World J Microbiol Biotechnol 11:163–167. doi: 10.1007/BF00704640
    Veiga ACP, Vacari AM, Volpe HXL, Laurentis VL, De Bortoli SA (2013) Quality control of Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) from different Brazilian bio-factories. Biocontrol Sci Technol 23:665–673. doi: 10.1080/09583157.2013.790932
    Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. P Natl Acad Sci USA 100:2760–2765. doi: 10.1073/pnas.0538072100
    Xue J, Liang G, Crickmore N, Li H, He K, Song F, Feng X, Huang D, Zhang J (2008) Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett 280:95–101. doi: 10.1111/j.1574-6968.2007.01053.x
    Zhang L, Huang F, Rogers Leonard B, Chen M, Clark T, Zhu YC, Wangila DS, Yang F, Niu Y (2013) Susceptibility of Cry1Ab maize-resistant and -susceptible strains of sugarcane borer (Lepidoptera: Crambidae) to four individual Cry proteins. J Invertebr Pathol 112:267–272. doi: 10.1016/j.jip.2012.12.007