Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential (2014)

  • Authors:
  • USP affiliated authors: FARIA, ROBERTO MENDONÇA - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s10853-013-8007-0
  • Subjects: CRISTALOGRAFIA; FILMES FINOS; ESPECTROSCOPIA RAMAN
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10853-013-8007-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10853-013-8007-0 (Fonte: Unpaywall API)

    Título do periódico: Journal of Materials Science

    ISSN: 0022-2461,1573-4803

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: submittedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of Materials Science

    ISSN: 0022-2461

    Citescore - 2017: 2.83

    SJR - 2017: 0.807

    SNIP - 2017: 1.064


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89021978PROD021978
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Nara R.; PLA CID, Cristiani C.; SPADA, Edna R.; et al. Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential. Journal of Materials Science, New York, Springer, v. 49, n. 7, p. 2952-2959, 2014. Disponível em: < http://dx.doi.org/10.1007/s10853-013-8007-0 > DOI: 10.1007/s10853-013-8007-0.
    • APA

      Silva, N. R., Pla Cid, C. C., Spada, E. R., Reis, F. T. R., Faria, R. M., & Sartorelli, M. L. (2014). Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential. Journal of Materials Science, 49( 7), 2952-2959. doi:10.1007/s10853-013-8007-0
    • NLM

      Silva NR, Pla Cid CC, Spada ER, Reis FTR, Faria RM, Sartorelli ML. Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential [Internet]. Journal of Materials Science. 2014 ; 49( 7): 2952-2959.Available from: http://dx.doi.org/10.1007/s10853-013-8007-0
    • Vancouver

      Silva NR, Pla Cid CC, Spada ER, Reis FTR, Faria RM, Sartorelli ML. Electrosynthesized TiO2 films: dependence of the brookite-anatase ratio on the applied potential [Internet]. Journal of Materials Science. 2014 ; 49( 7): 2952-2959.Available from: http://dx.doi.org/10.1007/s10853-013-8007-0

    Referências citadas na obra
    Campos CS, Spada ER, de Paula FR, Reis F, Faria RM, Sartorelli ML (2012) Raman and XRD study on brookite–anatase coexistence in cathodic electrosynthesized titania. J Raman Spectrosc 43:433–438
    Dziewoński PM, Grzeszczuk M (2009) Deposition of thin TiO2 layers on platinum by means of cyclic voltammetry of selected complex Ti(IV) media leading to anatase. Electrochim Acta 54(16):4045–4055
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nat Biotechnol 238(5358):37–38
    Golubović A, Šćepanović M, Kremenović A, AŠkrabić S, Berec V, Dohčević-Mitrović Z, Popović Z (2009) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol-Gel Sci Technol 49:311–319
    Hu C-C, Hsu H-C, Chang K-H (2012) Cathodic deposition of TiO2: effects of H2O2 and deposition modes. J Electrochem Soc 159(7):D418–D424
    Hu W, Li L, Li G, Tang C, Sun L (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Des 9(8):3676–3682
    Jiao Y, Chen F, Zhao B, Yang H, Zhang J (2012) Anatase grain loaded brookite nanoflower hybrid with superior photocatalytic activity for organic degradation. Colloid Surf A 402:66–71
    Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater 22(6):2050–2060
    Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics 151(1?4):19–27
    Kinsinger NM, Wong A, Li D, Villalobos F, Kisailus D (2010) Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water-soluble precursor. Cryst Growth Des 10(12):5254–5261
    Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2(7):717–720
    Natarajan C, Nogami G (1996) Cathodic electrodeposition of nanocrystalline titanium dioxide thin films. J Electrochem Soc 143(5):1547–1550
    Nobial M, Devos O, Mattos OR, Tribollet B (2007) The nitrate reduction process: a way for increasing interfacial pH. J Electroanal Chem 600(1):87–94
    Ohno Y, Tomita K, Komatsubara Y, Taniguchi T, Katsumata K-i, Matsushita N, Kogure T, Okada K (2011) Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst Growth Des 11(11):4831–4836
    Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7(6):321–324
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nat Biotechnol 353(6346):737–740
    Pauporté Th, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects. J Electroanal Chem 517(1-2):54–62
    Su R, Bechstein R, Sø L, Vang RT, Sillassen M, Esbjörnsson B, Palmqvist A, Besenbacher F (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J Phys Chem C 115(49):24,287–292
    Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y (1994) Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol–gel method using metal alkoxide. J Mater Sci 29(6):1617–1622. doi: 10.1007/BF00368935
    Šćepanović M, AŠkrabić S, Berec V, Golubović A, Dohčević-Mitrović Z, Kremenović A, Popović ZV (2009) Characterization of La-doped TiO2 nanopowders by raman spectroscopy. Acta Phys Pol A 115(4):771–774
    Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2013) Porous nanocrystalline TiO2 with high lithium-ion insertion performance. J Mater Sci 48(6):2733–2742. doi: 10.1007/s10853-012-7073-z
    Xiang L, Zhao X, Yin J, Fan B (2012) Well-organized 3D urchin-like hierarchical TiO2 microspheres with high photocatalytic activity. J Mater Sci 47(3):1436–1445. doi: 10.1007/s10853-011-5924-7
    Zhitomirsky I, Gal-Or L (1996) Cathodic electrosynthesis of ceramic deposits. J Eur Ceram Soc 16(8):819–824