Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Biological evolutionof replicator systems: towards a quantitative approach (2013)

  • Authors:
  • USP affiliated authors: HORVATH, JORGE ERNESTO - IAG
  • USP Schools: IAG
  • DOI: 10.1007/s11084-013-9327-4
  • Subjects: EVOLUÇÃO; SELEÇÃO NATURAL; TERMODINÂMICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11084-013-9327-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11084-013-9327-4 (Fonte: Unpaywall API)

    Título do periódico: Origins of Life and Evolution of Biospheres

    ISSN: 0169-6149,1573-0875



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Origins of Life and Evolution of Biospheres

    ISSN: 0169-6149

    Citescore - 2017: 1.44

    SJR - 2017: 0.613

    SNIP - 2017: 0.688


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARTÍN, Osmel; HORVATH, Jorge Ernesto. Biological evolutionof replicator systems: towards a quantitative approach. Origins of Life and Evolution of Biospheres, Dordrecht, v. 43, p. 151-160, 2013. Disponível em: < http://dx.doi.org/10.1007/s11084-013-9327-4 > DOI: 10.1007/s11084-013-9327-4.
    • APA

      Martín, O., & Horvath, J. E. (2013). Biological evolutionof replicator systems: towards a quantitative approach. Origins of Life and Evolution of Biospheres, 43, 151-160. doi:10.1007/s11084-013-9327-4
    • NLM

      Martín O, Horvath JE. Biological evolutionof replicator systems: towards a quantitative approach [Internet]. Origins of Life and Evolution of Biospheres. 2013 ; 43 151-160.Available from: http://dx.doi.org/10.1007/s11084-013-9327-4
    • Vancouver

      Martín O, Horvath JE. Biological evolutionof replicator systems: towards a quantitative approach [Internet]. Origins of Life and Evolution of Biospheres. 2013 ; 43 151-160.Available from: http://dx.doi.org/10.1007/s11084-013-9327-4

    Referências citadas na obra
    Albery WJ, Knowles JR (1976) Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15:5631–5640
    Bari S, Gonzalez-Magaña O, Reitsma G, Werner J, Schippers S, Hoekstra R, Schlathölter T (2011) Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. J Chem Phys 134:024314–024318
    Burbaum JJ, Raines RJ, Albery WJ, Knowles JR (1989) Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry 28:9293–9305
    Butterfield NJ (2003) Exceptional fossil preservation and the Cambrian explosion. Integr Comp Biol 43(1):166–177
    De More, WB et al. (1996) Chemical kinetics and photochemical data for use in stratospheric modelling. Jet Propulsion Laboratory Publication, Evaluation Nr. 10, 149pp
    Dewar RC, Juretić D, Županović P (2006) The functional design of the rotary enzymeATP synthase is consistent with maximum entropy production. Chem Phys Lett 430:177–182
    Dobovišek A, Županović P, Brumen M, Bonačić-Lošić Z, Kuić D, Juretić D (2011) Enzyme kinetics and the maximum entropy production principle. Biophys Chem 154:49–55
    Juretić D, Županović P (2003) Photosynthetic models with maximum entropy productionin irreversible charge transfer steps. J Comp Biol Chem 27:541–553
    Kleidon A (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Phil Trans R Soc A 368:181–196
    Kleidon A, Malhi Y, Cox PM (2010) Maximum entropy production in environmental and ecological systems. Phil Trans R Soc B 365:1297–1302
    Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rept 426:1–45
    Melott AL, Thomas BC (2009) Late ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology 35:311–320
    Melott AL, Lieberman BS, Laird CM, Martin LD, Medvedev MV, Thomas BC, Cannizzo JK, Gehrels N, Jackman CH (2004) Did a gamma-ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61
    Pavlov AA, Brown LL, Kasting JF (2001) UV shielding of NH3 and O2 by organic hazes in the archean atmosphere. J Geophys Res 106:23267–23287
    Prigogine I (1967) Introduction to Thermodynamics of Irreversible Processes. Interscience, New York
    Pross A (2005) On the emergence of biological complexity: life as a kinetic state of matter. Orig Life Evol Biosph 35:151–166
    Pross A (2011) Toward a general theory of evolution: extending Darwinian Theory to inanimate matter. J Syst Chem 2:1–14
    Pross A, Khodorkovsky V (2004) Extending the concept of kinetic stability: towards a paradigm for life. J Phys Org Chem 17:312–316
    Schulte P et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleocene boundary. Science 327:1214–1218
    Srienc F, Unrean P (2010) A statistical thermodynamical interpretation of metabolism. Entropy 12:1921–1935
    Wignall P, Racki G (2009) Mantle plume: the invisible serial killer – Application to the Permian-Triassic boundary mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 283:99–101