Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

TS-stream: clustering time series on data streams (2014)

  • Authors:
  • USP affiliated authors: MELLO, RODRIGO FERNANDES DE - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10844-013-0290-3
  • Subjects: SISTEMAS DISTRIBUÍDOS; PROGRAMAÇÃO CONCORRENTE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10844-013-0290-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10844-013-0290-3 (Fonte: Unpaywall API)

    Título do periódico: Journal of Intelligent Information Systems

    ISSN: 0925-9902,1573-7675



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Intelligent Information Systems

    ISSN: 0925-9902

    Citescore - 2017: 1.74

    SJR - 2017: 0.481

    SNIP - 2017: 1.106


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2465127-10PROD-2465127
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PEREIRA, Cássio M. M; MELLO, Rodrigo Fernandes de. TS-stream: clustering time series on data streams. Journal of Intelligent Information Systems, Dordrecht, Springer, v. 42, n. ju 2014, p. 531-566, 2014. Disponível em: < http://dx.doi.org/10.1007/s10844-013-0290-3 > DOI: 10.1007/s10844-013-0290-3.
    • APA

      Pereira, C. M. M., & Mello, R. F. de. (2014). TS-stream: clustering time series on data streams. Journal of Intelligent Information Systems, 42( ju 2014), 531-566. doi:10.1007/s10844-013-0290-3
    • NLM

      Pereira CMM, Mello RF de. TS-stream: clustering time series on data streams [Internet]. Journal of Intelligent Information Systems. 2014 ; 42( ju 2014): 531-566.Available from: http://dx.doi.org/10.1007/s10844-013-0290-3
    • Vancouver

      Pereira CMM, Mello RF de. TS-stream: clustering time series on data streams [Internet]. Journal of Intelligent Information Systems. 2014 ; 42( ju 2014): 531-566.Available from: http://dx.doi.org/10.1007/s10844-013-0290-3

    Referências citadas na obra
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.S. (2003). A framework for clustering evolving data streams. In: VLDB ’2003: Proceedings of the 29th international conference on very large data bases (pp. 81–92). VLDB Endowment.
    Aggarwal, C.C., Han, J.,Wang, J., Yu, P.S. (2004). A framework for projected clustering of high dimensional data streams. In VLDB ’04: Proceedings of the 30th international conference on very large data bases (pp. 852–863). VLDB Endowment.
    Ahmed, N., Natarajan, T., Rao, K.R. (1974). Discrete cosine transfom. IEEE Transactions on Computers, 23, 90–93.
    Appel, G. (2005). Technical analysis: power tools for active investors, 1st edn, FT Press.
    Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G. (2011). Differential Evolution with DEoptim: An application to non-convex portfolio optimization. The Royal Journal, 3(1), 27–34.
    Athanassioum, P. (2012). Research handbook on hedge funds, private equity and alternative investments, Edward Elgar Pub.
    Bélisle, C. (1992). Convergence theorems for a class of simulated annealing algorithms on rd. Journal of Applied Probability, 885–895.
    Beringer, J., & Hüllermeier, E. (2006). Online clustering of parallel data streams. Data Knowledge Engineering, 58, 180–204. doi: 10.1016/j.datak.2005.05.009 .
    Bifet, A., & Kirby, R. (2009). Data stream mining: A practical approach. Technical report, The University of Waikato.
    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The journal of political economy, 637–654.
    Box, G., & Jenkins, G. (1994). Time series analysis: forecasting and control, Prentice Hall PTR.
    Cao, F. (2006). Density-based clustering over an evolving data stream with noise. In Proceedings of the 6th SIAM international conference data mining.
    Chaovalit, P. (2009). Clustering transient data streams by example and by variable. PhD thesis, University of Maryland.
    Chatfield, C. (2003). The analysis of time series: an introduction (Vol. 59). CRC press.
    Daubechies, I. (1992). Ten lectures on wavelets. Society for industrial and applied mathematics, Philadelphia.
    Díaz, S.P., & Vilar, J.A. (2010). Comparing several parametric and nonparametric approaches to time series clustering: a simulation study. Journal of Classification, 27, 333–362. doi: 10.1007/s00357-010-9064-6 .
    D’haeseleer, P., et al. (2005). How does gene expression clustering work? Nature biotechnology, 23(12), 1499–1502.
    Fourier, J. (1888). Théorie analytique de la chaleur (Vol. 1). Gauthier-Villars et fils.
    Fu, T.C. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1), 164–181. doi: 10.1016/j.engappai.2010.09.007 , http://www.sciencedirect.com/science/article/B6V2M-516KF3X-1/2/f93f19227049b30e34b3de788e9e2b7f .
    Fujita, A., Sato, J., Demasi, M., Sogayar, M., Ferreira, C., Miyano, S. (2009). Comparing pearson, spearman and hoeffding’s d measure for gene expression association analysis. Journal of Bioinformatics and Computational Biology, 7(4), 663–84.
    Gama, J. (2010). Knowledge discovery from data streams, 1st edn. Chapman & Hall/CRC.
    Hilbert, D. (1912). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. BG Teubner.
    Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 13–30.
    Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., Liu, H. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903.
    Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218. doi: 10.1007/BF01908075 .
    Ishii, R.P., Rios, R.A., de Mello, R.F. (2011). Classification of time series generation processes using experimental tools: a survey and proposal of an automatic and systematic approach. International Journal of Computational Science and Engineering, 1, 1–21.
    Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. New York: Cambridge University Press.
    Keogh, E., Lin, J., Truppel, W. (2003). Clustering of time series subsequences is meaningless: implications for previous and future research. In ICDM ’03: Proceedings of the 3rd IEEE international conference on data mining, IEEE computer society (pp. 115–). Washington, DC. http://dl.acm.org/citation.cfm?id=951949.952156 .
    Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y. (2008). Continuous subspace clustering in streaming time series. Information Systems, 33(2), 240–260.
    Kranen, P., Assent, I., Baldauf, C., Seidl, T. (2011). The clustree: indexing micro-clusters for anytime stream mining. Knowledge and Information Systems, 29(2), 249–272. doi: 10.1007/s10115-010-0342-8 .
    Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.
    MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.
    Marwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6), 237–329. doi: 10.1016/j.physrep.2006.11.001 .
    Peng, C., Buldyrev, S., Havlin, S., Simons, M., Stanley, H., Goldberger, A. (1994). On the mosaic organization of DNA sequences. Physical Review E, 49, 1685–1689.
    Pompe, B. (1993). Measuring statistical dependences in a time series. Journal of Statistical Physics, 73(3), 587–610.
    Quinlan, J. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.
    Quinlan, J. (1993). C4. 5: programs for machine learning, Morgan Kaufmann.
    R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org , ISBN 3-900051-07-0.
    Ren, J., Cai, B., Hu, C. (2011). Clustering over data streams based on grid density and index tree. Journal of Convergence Information Technology, 6(1).
    Rodrigues, P.P., Gama, J., Pedroso, J. (2008). Hierarchical clustering of time-series data streams. IEEE Transactions on Knowledge and Data Engineering, 20, 615–627. doi: 10.1109/TKDE.2007.190727 .
    Sandri, M. (1996). Numerical calculation of lyapunov exponents. The Mathematical Journal, 6(3), 78–84.
    Skiena, S.S. (1998). The algorithm design manual. New York: Springer.
    Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical systems and turbulence, (pp. 366–381). Warwick 1980.
    Tan, P.N., Steinbach, M., Kumar, V. (2005). Introduction to Data Mining. Boston: Addison-Wesley Longman.
    Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung, C.C., Peng, W.C. (2012). On discovery of traveling companions from streaming trajectories. In 2012 IEEE 28th International Conference on Data Engineering (ICDE), (pp. 186-197). IEEE.
    Vinh, N.X., Epps, J., Bailey, J. (2009). Information theoretic measures for clusterings comparison: is a correction for chance necessary? In ICML ’09 (pp 1073–1080). New York: ACM. doi: 10.1145/1553374.1553511 .
    Walpole, R., Myers, R., Myers, S., Ye, K. (1998). Probability and statistics for engineers and scientists. Upper Saddle River: Prentice Hall.
    Wan, L., Ng, W.K., Dang, X.H., Yu, P.S., Zhang, K. (2009). Density-based clustering of data streams at multiple resolutions. ACM Transactions on Knowledge and Discovery Data, 3(3), 1–28. doi: 10.1145/1552303.1552307 .
    Whitney, H. (1936). Differentiable manifolds. Annals of Mathematics, 37(3), 645–680.
    Widiputra, H., Pears, R., Kasabov, N. (2011). Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends. In Proceedings of the 15th Pacific-Asia conference on advances in knowledge discovery and data mining (pp. 161–172). Berlin, Heidelberg: Springer-Verlag.
    Yang, Y., & Chen, K. (2011). Temporal data clustering via weighted clustering ensemble with different representations. IEEE Transactions on Knowledge and Data Engineering, 23, 307–320.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S. (2013). On discovery of gathering patterns from trajectories. In IEEE international conference on data engineering, ICDE.