Ver registro no DEDALUS
Exportar registro bibliográfico



Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases (2013)

  • Authors:
  • USP Schools: ICB
  • DOI: 10.1007/s10571-012-9904-5
  • Subjects: FISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10571-012-9904-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10571-012-9904-5 (Fonte: Unpaywall API)

    Título do periódico: Cellular and Molecular Neurobiology

    ISSN: 0272-4340,1573-6830

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Cellular and Molecular Neurobiology

    ISSN: 0272-4340

    Citescore - 2017: 3.42

    SJR - 2017: 1.283

    SNIP - 2017: 0.861

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100085438PC ICB BMB SEP 2013
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LEONELLI, Mauro; MARTINS, Daniel O.; BRITTO, Luiz Roberto Giorgetti. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cellular and Molecular Neurobiology, New York, v. 33, n. 3, p. 379-392, 2013. Disponível em: < > DOI: 10.1007/s10571-012-9904-5.
    • APA

      Leonelli, M., Martins, D. O., & Britto, L. R. G. (2013). Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cellular and Molecular Neurobiology, 33( 3), 379-392. doi:10.1007/s10571-012-9904-5
    • NLM

      Leonelli M, Martins DO, Britto LRG. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases [Internet]. Cellular and Molecular Neurobiology. 2013 ; 33( 3): 379-392.Available from:
    • Vancouver

      Leonelli M, Martins DO, Britto LRG. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases [Internet]. Cellular and Molecular Neurobiology. 2013 ; 33( 3): 379-392.Available from:

    Referências citadas na obra
    Abu El-Asrar AM, Desmet S, Meersschaert A et al (2001) Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am J Ophthalmol 132:551–556
    Akerman S, Kaube H, Goadsby PJ (2004) Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 142:1354–1360
    Alawi K, Keeble J (2010) The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacol Ther 125:181–195
    Amantini C, Mosca M, Nabissi M et al (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990
    Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337
    Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med 45:367–376
    Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491
    Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80
    Bandyopadhyay A, Chakder S, Rattan S (1997) Regulation of inducible and neuronal nitric oxide synthase gene expression by interferon-gamma and VIP. Am J Physiol 272:C1790–C1797
    Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6:3338–3344
    Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite—implications for endothelial injury from nitric-oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624
    Bisset GW, Lewis GP (1962) A spectrum of pharmacological activity in some biologically active peptides. Br J Pharmacol Chemother 19:168–182
    Blute TA, Lee MR, Eldred WD (2000) Direct imaging of NMDA-stimulated nitric oxide production in the retina. Vis Neurosci 17:557–566
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770
    Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298
    Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247
    Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824
    Chakravarthy U, Stitt AW, McNally J et al (1995) Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr Eye Res 14:285–294
    Chu CJ, Huang SM, De Petrocellis L et al (2003) N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278:13633–13639
    Corradin SB, Mauel J, Donini SD et al (1993) Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255–262
    Dedov VN, Roufogalis BD (2000) Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons. Neuroscience 95:183–188
    del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555
    Du Y, Hirooka K, Miyamoto O et al (2008) Both amacrine and bipolar cells release glutamate in the rat retina after ischemia/reperfusion insult in vitro. Curr Eye Res 33:782–788
    El-Remessy AB, Khalil IE, Matragoon S et al (2003) Neuroprotective effect of (−)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-d-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 163:1997–2008
    Forder JP, Tymianski M (2009) Postsynaptic mechanisms of excitotoxicity: involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience 158:293–300
    Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802
    Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388
    Gaspar MN, Ribeiro CA, Cunha-Vaz JG et al (2004) Effects of neuropeptides on the sumatriptan-disturbed circulation in the optic nerve head of rabbits. Pharmacology 70:152–159
    Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17:7–23
    Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141:1313–1320
    Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696
    Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23
    Huang SM, Bisogno T, Trevisani M et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405
    Ientile R, Picciurro V, Pedale S et al (1996) Nitric oxide enhances amino acid release from immature chick embryo retina. Neurosci Lett 219:79–82
    Jin YH, Bailey TW, Li BY et al (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24:4709–4717
    Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 49:3503–3512
    Jung JE, Kim GS, Narasimhan P et al (2009) Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29:7003–7014
    Kermer P, Klocker N, Weishaupt JH et al (2001) Transection of the optic nerve in rats: studying neuronal death and survival in vivo. Brain Res Brain Res Protoc 7:255–260
    Kim SR, Kim SU, Oh U et al (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329
    Koeberle PD, Ball AK (1999) Nitric oxide synthase inhibition delays axonal degeneration and promotes the survival of axotomized retinal ganglion cells. Exp Neurol 158:366–381
    Kojima H, Nakatsubo N, Kikuchi K et al (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453
    Leonelli M, Martins DO, Kihara AH et al (2009) Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina. Int J Dev Neurosci 27:709–718
    Leonelli M, Martins DO, Britto LR (2010) TRPV1 receptors are involved in protein nitration and Muller cell reaction in the acutely axotomized rat retina. Exp Eye Res 91:755–768
    Leonelli M, Martins DO, Britto LR (2011) TRPV1 receptors modulate retinal development. Int J Dev Neurosci 29:405–413
    Li DP, Chen SR, Pan HL (2004) VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J Neurophysiol 92:1807–1816
    Lilja J, Lindegren H, Forsby A (2007) Surfactant-induced TRPV1 activity–a novel mechanism for eye irritation? Toxicol Sci 99:174–180
    Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30:178–186
    Maccarrone M, Rossi S, Bari M et al (2008) Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 11:152–159
    Macho A, Calzado MA, Munoz-Blanco J et al (1999) Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ 6:155–165
    Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627
    Marinelli S, Di Marzo V, Berretta N et al (2003) Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci 23:3136–3144
    Medvedeva YV, Kim MS, Usachev YM (2008) Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons. J Neurosci 28:5295–5311
    Metea MR, Newman EA (2007) Signalling within the neurovascular unit in the mammalian retina. Exp Physiol 92:635–640
    Morgans CW, Zhang J, Jeffrey BG et al (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106:19174–19178
    Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233
    Murphy TH, Miyamoto M, Sastre A et al (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558
    Musella A, De Chiara V, Rossi S et al (2009) TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 40:89–97
    Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96:9944–9948
    Nguyen D, Alavi MV, Kim KY et al (2011) A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis 2:e240
    Nucci C, Gasperi V, Tartaglione R et al (2007) Involvement of the endocannabinoid system in retinal damage after high intraocular pressure-induced ischemia in rats. Invest Ophthalmol Vis Sci 48:2997–3004
    Palazzo E, de Novellis V, Marabese I et al (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75
    Poblete IM, Orliac ML, Briones R et al (2005) Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol 568:539–551
    Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990
    Qiao S, Li W, Tsubouchi R et al (2005) Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res 51:175–183
    Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574
    Ritter S, Dinh TT (1990) Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J Comp Neurol 296:447–461
    Ryskamp DA, Witkovsky P, Barabas P et al (2012) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31:7089–7101
    Sappington RM, Calkins DJ (2008) Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 49:3004–3017
    Sappington RM, Sidorova T, Long DJ et al (2009) TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 50:717–728
    Schilling T, Eder C (2009) Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J Neuroimmunol 216(1–2):118–121
    Shen Y, Heimel JA, Kamermans M et al (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29:6088–6093
    Shirakawa H, Yamaoka T, Sanpei K et al (2008) TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons. Biochem Biophys Res Commun 377:1211–1215
    Sikand P, Premkumar LS (2007) Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. J Physiol 581:631–647
    Smart D, Gunthorpe MJ, Jerman JC et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230
    Starowicz K, Maione S, Cristino L et al (2007) Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J Neurosci 27:13739–13749
    Szallasi A, Blumberg PM (1990) Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci 47:1399–1408
    Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384
    Thomas KC, Sabnis AS, Johansen ME et al (2007) Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther 321:830–838
    Thomas KC, Roberts JK, Deering-Rice CE et al (2012) Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury. Am J Physiol Lung Cell Mol Physiol 302:L111–L119
    Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18:765–810
    Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12
    Toth A, Boczan J, Kedei N et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168
    Vellani V, Mapplebeck S, Moriondo A et al (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825
    Venturini CM, Knowles RG, Palmer RM et al (1991) Synthesis of nitric oxide in the bovine retina. Biochem Biophys Res Commun 180:920–925
    Vidal L, Diaz F, Villena A et al (2006) Nitric oxide synthase in retina and optic nerve head of rat with increased intraocular pressure and effect of timolol. Brain Res Bull 70:406–413
    Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279
    Westlund KN, Kochukov MY, Lu Y et al (2010) Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol Pain 6:46
    Ye XD, Laties AM, Stone RA (1990) Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31:1731–1737
    Zeevalk GD, Nicklas WJ (1994) Nitric oxide in retina: relation to excitatory amino acids and excitotoxicity. Exp Eye Res 58:343–350
    Zeevalk GD, Schoepp D, Nicklas WJ (1995) Excitotoxicity at both NMDA and non-NMDA glutamate receptors is antagonized by aurintricarboxylic acid: evidence for differing mechanisms of action. J Neurochem 64:1749–1758
    Zschenderlein C, Gebhardt C, von Bohlen Und Halbach O et al (2011) Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS One 6:e16116
    Zygmunt PM, Petersson J, Andersson DA et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457