Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy (2014)

  • Authors:
  • USP affiliated authors: ANA, LAURO WICHERT - FMRP ; SANTOS, ANTONIO CARLOS DOS - FMRP ; SAKAMOTO, AMÉRICO CEIKI - FMRP
  • USP Schools: FMRP; FMRP; FMRP
  • DOI: 10.1007/s10072-013-1494-6
  • Subjects: GENES; EPILEPSIA (GENÉTICA;DIAGNÓSTICO)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10072-013-1494-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Neurological Sciences

    ISSN: 1590-1874

    Citescore - 2017: 1.65

    SJR - 2017: 0.73

    SNIP - 2017: 0.754


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2477298pcd 2477298 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VALADÃO, Michelle N.; COIMBRA, Érica Regina; LANDEMBERGER, Michele C.; et al. Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy. Neurological Sciences, Milan, v. 35, n. 2, p. 239-244, 2014. Disponível em: < http://dx.doi.org/10.1007/s10072-013-1494-6 > DOI: 10.1007/s10072-013-1494-6.
    • APA

      Valadão, M. N., Coimbra, É. R., Landemberger, M. C., Velasco, T. R., Terra, V. C., Wichert-Ana, L., et al. (2014). Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy. Neurological Sciences, 35( 2), 239-244. doi:10.1007/s10072-013-1494-6
    • NLM

      Valadão MN, Coimbra ÉR, Landemberger MC, Velasco TR, Terra VC, Wichert-Ana L, Alexandre Júnior V, Araújo Júnior D, Guarnieri R, Martins VR, Santos AC dos, Sakamoto AC, Walz R. Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy [Internet]. Neurological Sciences. 2014 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10072-013-1494-6
    • Vancouver

      Valadão MN, Coimbra ÉR, Landemberger MC, Velasco TR, Terra VC, Wichert-Ana L, Alexandre Júnior V, Araújo Júnior D, Guarnieri R, Martins VR, Santos AC dos, Sakamoto AC, Walz R. Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy [Internet]. Neurological Sciences. 2014 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10072-013-1494-6

    Referências citadas na obra
    Oyegbile TO, Bayless K, Dabbs K, Jones J, Rutecki P, Pierson R, Seidenberg M, Hermann B (2011) The nature and extent of cerebellar atrophy in chronic temporal lobe epilepsy. Epilepsia 52(4):698–706
    De Marcos FA, Ghizoni E, Kobayashi E, Li LM, Cendes F (2003) Cerebellar volume and long-term use of phenytoin. Seizure J Br Epilepsy Assoc 12(5):312–315
    Botez MI, Attig E, Vezina JL (1988) Cerebellar atrophy in epileptic patients. Can J Neurol Sci 15(3):299–303
    Ney GC, Lantos G, Barr WB, Schaul N (1994) Cerebellar atrophy in patients with long-term phenytoin exposure and epilepsy. Arch Neurol 51(8):767–771
    Alioğlu Z, Sari A, Velioğlu SK, Ozmenoglu M (2000) Cerebellar atrophy following acute phenytoin intoxication. J Neuroradiol 27(1):52–55
    Del Negro A, Dantas CD, Zanardi V, Montenegro MA, Cendes F (2000) Dose-dependent relationship of chronic use of phenytoin and cerebellar atrophy in patients with epilepsy. Arq Neuropsiquiatr 58(2A):276–281
    Kuruvilla T, Bharucha NE (1997) Cerebellar atrophy after acute phenytoin intoxication. Epilepsia 38(4):500–502
    Lindvall O, Nilsson B (1984) Cerebellar atrophy following phenytoin intoxication. Ann Neurol 16(2):258–260
    Volk B, Kirchgassner N (1985) Damage of Purkinje cell axons following chronic phenytoin administration: an animal model of distal axonopathy. Acta Neuropathol 67(1–2):67–74
    Dam M (1970) The number of Purkinje cells after diphenylhydantoin intoxication in monkeys. Epilepsia 11(2):199–205
    Crooks R, Mitchell T, Thom M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41(1):63–73
    Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, Del Rio JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22(17):3041–3054
    Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR et al (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181(3):551–565
    Rangel A, Burgaya F, Gavin R, Soriano E, Aguzzi A, Del Rio JA (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85(12):2741–2755
    Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, Martins VR, Brentani RR (1999) Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40(12):1679–1682
    Walz R, Castro RM, Velasco TR, Carlotti CG Jr, Sakamoto AC, Brentani RR, Martins VR (2002) Cellular prion protein: implications in seizures and epilepsy. Cell Mol Neurobiol 22(3):249–257
    Klamt F, Dal-Pizzol F, Conte da Frota ML Jr, Walz R, Andrades ME, da Silva EG, Brentani RR, Izquierdo I, Fonseca Moreira JC (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30(10):1137–1144
    Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728
    Martins VR, Linden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, Brentani RR (2002) Cellular prion protein: on the road for functions. FEBS Lett 512(1–3):25–28
    Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wuthrich K (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci USA 95(20):11667–11672
    Del Bo R, Comi GP, Giorda R, Crimi M, Locatelli F, Martinelli-Boneschi F, Pozzoli U, Castelli E, Bresolin N, Scarlato G (2003) The 129 codon polymorphism of the prion protein gene influences earlier cognitive performance in down syndrome subjects. J Neurol 250(6):688–692
    Berr C, Helbecque N, Sazdovitch V, Mohr M, Amant C, Amouyel P, Alperovitch A, Hauw JJ (2003) Polymorphism of the codon 129 of the prion protein (PrP) gene and neuropathology of cerebral ageing. Acta Neuropathol 106(1):71–74
    Labate A, Manna I, Gambardella A, Le Piane E, La Russa A, Condino F, Cittadella R, Aguglia U, Quattrone A (2007) Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women. Neurosci Lett 421(1):1–4
    Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, de Quervain DJ (2005) The prion gene is associated with human long-term memory. Hum Mol Genet 14(15):2241–2246
    Coimbra ER, Rezek K, Escorsi-Rosset S, Landemberger MC, Castro RM, Valadao MN, Guarnieri R, Velasco TR, Terra-Bustamante VC, Bianchin MM et al (2006) Cognitive performance of patients with mesial temporal lobe epilepsy is not associated with human prion protein gene variant allele at codons 129 and 171. Epilepsy Behav 8(3):635–642
    Combarros O, Sanchez-Guerra M, Llorca J, Alvarez-Arcaya A, Berciano J, Pena N, Fernandez-Viadero C (2000) Polymorphism at codon 129 of the prion protein gene is not associated with sporadic AD. Neurology 55(4):593–595
    Rujescu D, Meisenzahl EM, Giegling I, Kirner A, Leinsinger G, Hegerl U, Hahn K, Moller HJ (2002) Methionine homozygosity at codon 129 in the prion protein is associated with white matter reduction and enlargement of CSF compartments in healthy volunteers and schizophrenic patients. Neuroimage 15(1):200–206
    Luft AR, Skalej M, Welte D, Kolb R, Burk K, Schulz JB, Klockgether T, Voigt K (1998) A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med 40(1):143–151
    Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, Velakoulis D, Pantelis C (2000) An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 44(6):973–977
    Palmer MS, Mahal SP, Campbell TA, Hill AF, Sidle KC, Laplanche JL, Collinge J (1993) Deletions in the prion protein gene are not associated with CJD. Hum Mol Genet 2(5):541–544
    Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR et al (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Gen Physiol 131(6):i5
    Brown DR (2001) Prion and prejudice: normal protein and the synapse. Trends Neurosci 24(2):85–90
    Brown DR (2005) Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol 43(4):229–243
    Lazzari C, Peggion C, Stella R, Massimino ML, Lim D, Bertoli A, Sorgato MC (2011) Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem 116(5):881–890
    Lobao-Soares B, Bianchin MM, Linhares MN, Carqueja CL, Tasca CI, Souza M, Marques W Jr, Brentani R, Martins VR, Sakamoto AC et al (2005) Normal brain mitochondrial respiration in adult mice lacking cellular prion protein. Neurosci Lett 375(3):203–206