Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Short-term creatine supplementation does not reduce increased homocysteine concentration induced by acute exercise in humans (2014)

  • Authors:
  • USP affiliated authors: CUNHA, SELMA FREIRE DE CARVALHO DA - FMRP ; FREITAS, ELLEN CRISTINI DE - EEFERP ; JORDAO JUNIOR, ALCEU AFONSO - FMRP
  • USP Schools: FMRP; EEFERP; FMRP
  • DOI: 10.1007/s00394-013-0636-1
  • Subjects: NUTRIÇÃO; EXERCÍCIO FÍSICO; SUPLEMENTAÇÃO ALIMENTAR
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00394-013-0636-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Informações sobre o Citescore
  • Título: European Journal of Nutrition

    ISSN: 1436-6207

    Citescore - 2017: 3.36

    SJR - 2017: 1.408

    SNIP - 2017: 1.076


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2478793pcd 2478793 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DEMINICE, Rafael; ROSA, Flávia Troncon; FRANCO, Gabriel Silveira; et al. Short-term creatine supplementation does not reduce increased homocysteine concentration induced by acute exercise in humans. European Journal of Nutrition, Heidelberg, v. 53, n. 6, p. 1355-1361, 2014. Disponível em: < http://dx.doi.org/10.1007/s00394-013-0636-1 > DOI: 10.1007/s00394-013-0636-1.
    • APA

      Deminice, R., Rosa, F. T., Franco, G. S., Cunha, S. F. de C. da, Freitas, E. C. de, & Jordão Júnior, A. A. (2014). Short-term creatine supplementation does not reduce increased homocysteine concentration induced by acute exercise in humans. European Journal of Nutrition, 53( 6), 1355-1361. doi:10.1007/s00394-013-0636-1
    • NLM

      Deminice R, Rosa FT, Franco GS, Cunha SF de C da, Freitas EC de, Jordão Júnior AA. Short-term creatine supplementation does not reduce increased homocysteine concentration induced by acute exercise in humans [Internet]. European Journal of Nutrition. 2014 ; 53( 6): 1355-1361.Available from: http://dx.doi.org/10.1007/s00394-013-0636-1
    • Vancouver

      Deminice R, Rosa FT, Franco GS, Cunha SF de C da, Freitas EC de, Jordão Júnior AA. Short-term creatine supplementation does not reduce increased homocysteine concentration induced by acute exercise in humans [Internet]. European Journal of Nutrition. 2014 ; 53( 6): 1355-1361.Available from: http://dx.doi.org/10.1007/s00394-013-0636-1

    Referências citadas na obra
    Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 1(15):1927–1943. doi: 10.1089/ars2010.3721
    Taes YE, Delanghe JR, De Bacquer D, Langlois M, Stevens L, Geerolf I, Lameire NH, De Vriese AS (2004) Creatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patients. Kidney Int 66:2422–2428. doi: 10.1111/j.1523-1755.2004.66019.x
    Wijekoon EP, Brosnan ME, Brosnan JT (2007) Homocysteine metabolism in diabetes. Biochem Soc Trans 35:1175–1179
    Chen CS, Yeh YC, Chang YS, Huang MF (2011) Plasma homocysteine level and apathy in Alzheimer’s disease. J Am Geriatr Soc 59(9):1752–1754. doi: 10.1111/j.1532-5415.2011.03550.x
    Deminice R, da Silva RP, Lamarre SG, Brown C, Furey GN, McCarter SA, Jordao AA, Kelly KB, King-Jones K, Jacobs RL, Brosnan ME, Brosnan JT (2011) Creatine supplementation prevents the accumulation of fat in the livers of rats fed a high-fat diet. J Nutr 141(10):1799–1804. doi: 10.3945/jn.111.144857
    Brosnan JT, Jacobs RL, Stead LM et al (2004) Methylation demand: a key determinant of homocysteine metabolism. Act Biol Pol 51:405–413
    Brosnan JT, da Silva R, Brosnan ME (2007) Amino acids and the regulation of methyl balance in humans. Curr Opin Clin Nutr Metab Care 10:52–57. doi: 10.1097/MCO.0b013e3280110171
    Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246
    Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40:1325–1331. doi: 10.1007/s00726-011-0853-y
    Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to revaluate methyl balance in humans? Am J Clin Nutr 83:5–10
    Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293:F1799–F1804. doi: 10.1152/ajprenal.0 0356.2007
    da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296(2):E256–E261. doi: 10.1152/ajpendo.90547.2008
    Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT (2001) Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 281:E1095–E1100
    Taes YE, Delanghe JR, De Vriese AS, Rombait R, Vam Camp J, Lameire NH (2003) Creatine supplementation decrease homocysteine in an animal model of uremia. Kidney Int 64:1331–1337. doi: 10.1046/j.1523-1755.2003.00206.x
    Deminice R, Portari GV, Vannucchi H, Jordao AA (2009) Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br J Nutr 102:110–116. doi: 10.1017/S0007114508162985
    Deminice R, Vannucchi H, Simões-Ambrosio LM, Jordao AA (2011) Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats. Eur J Appl Physiol 111:2663–2670. doi: 10.1007/s00421-011-1891-6
    Herrmann M, Schorr H, Obeid R, Scharhag J, Urhausen A, Kindermann W, Herrmann W (2003) Homocysteine increases during endurance exercise. Clin Chem Lab Med 41:1518–1524. doi: 10.1515/CCLM.2003.233
    König D, Bissé E, Deibert P, Müller HM, Wieland H, Berg A (2003) Influence of training volume and acute physical exercise on the homocysteine levels in endurance-trained men: interactions with plasma folate and vitamin B12. Ann Nutr Metab 47:114–118. doi: 10.1159/000070032
    Venta R, Cruz E, Valcárcel G, Terrados N (2009) Plasma vitamins, amino acids, and renal function in postexercise hyperhomocysteinemia. Med Sci Sports Exerc 41:1645–1651. doi: 10.1249/MSS.0b013e31819e02f2
    Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol 81:232–237
    Derave W, Marescau B, Vanden Eede E, Eijnde BO, De Deyn PP, Hespel P (2004) Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans. J Appl Physiol 97(3):852–857. doi: 10.1152/japplphysiol.00206.2004
    Costa CM, Santos RCC, Lima ES (2006) A simple automated procedure for thiol measurement in human serum samples. J Bras Patol Med Lab 42:345–350. doi: 10.1590/S1676-24442006000500006
    Buchberger W, Ferdig M (2004) Improved high-performance liquid chromatographic determination of guanidino compounds by precolumn derivatization with ninhydrin and fluorescence detection. J Sep Sci 27:1309–1312
    Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248
    American College of Sports Medicine position stand (2009) Nutrition and athletic performance. Med Sci Sports Exerc 41(3):709–731. doi: 10.1249/MSS.0b013e318190eb86
    Korzun WJ (2004) Oral creatine supplements lower plasma homocysteine concentrations in humans. Clin Lab Sci 17(2):102–106
    Steenge GR, Verhoef P, Greenhaff PL (2001) The effect of creatine and resistance training on plasma homocysteine concentration in healthy volunteers. Arch Intern Med 161:1455–1456
    Freilinger M, Dunkler D, Lanator I, Item CB, Mühl A, Fowler B, Bodamer OA (2011) Effects of creatine supplementation in Rett syndrome: a randomized, placebo-controlled trial. J Dev Behav Pediatr 32(6):454–460. doi: 10.1097/DBP.0b013e31822177a8
    Stead LM, Brosnan ME, Brosnan JT (2000) Characterization of homocysteine metabolism in the rat liver. Biochem J 15(350 Pt 3):685–692
    Ueland PM (1995) Homocysteine species as components of plasma redox thiol status. Clin Chem 41(3):340–342
    Brosna JT (2001) Homocysteine and the kidney. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. Cambridge University Press, Cambridge, pp 176–184
    Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12(10):2181–2189
    Van Hall G, Saltin B, Wagenmakers AJ (1999) Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans. Clin Sci (Lond) 97(5):557–567
    Rennie MJ, Tipton KD (2000) Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 20:457–483. doi: 10.1146/annurev.nutr.20.1.457
    Joubert LM, Manore MM (2006) Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab 16(4):341–361
    Sotgia S, Carru C, Caria MA, Tadolini B, Deiana L, Zinellu A (2007) Acute variations in homocysteine levels are related to creatine changes induced by physical activity. Clin Nutr 26:444–449. doi: 10.1016/j.clnu.2007.05.003