Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis (2013)

  • Authors:
  • USP affiliated authors: CUNHA, THIAGO MATTAR - FMRP ; FERREIRA, SERGIO HENRIQUE - FMRP ; CUNHA, FERNANDO DE QUEIROZ - FMRP
  • USP Schools: FMRP; FMRP; FMRP
  • DOI: 10.1007/s00210-013-0834-7
  • Subjects: NEUTRÓFILOS (EFEITOS DE DROGAS); RECEPTORES ADRENÉRGICOS; NEUROIMUNOMODULAÇÃO; PERITONITE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00210-013-0834-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Naunyn-Schmiedeberg's Archives of Pharmacology

    ISSN: 0028-1298

    Citescore - 2017: 2.29

    SJR - 2017: 0.836

    SNIP - 2017: 0.784


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2482864pcd 2482864 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FIGUEIREDO, Jozi; FERREIRA, Ana Elisa; SILVA, Rangel Leal; et al. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg's Archives of Pharmacology, Heidelberg, v. 386, n. 4, p. 311-318, 2013. Disponível em: < http://dx.doi.org/10.1007/s00210-013-0834-7 > DOI: 10.1007/s00210-013-0834-7.
    • APA

      Figueiredo, J., Ferreira, A. E., Silva, R. L., Ulloa, L., Grieco, P., Cunha, T. M., et al. (2013). NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg's Archives of Pharmacology, 386( 4), 311-318. doi:10.1007/s00210-013-0834-7
    • NLM

      Figueiredo J, Ferreira AE, Silva RL, Ulloa L, Grieco P, Cunha TM, Ferreira SH, Cunha F de Q, Kanashiro A. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis [Internet]. Naunyn-Schmiedeberg's Archives of Pharmacology. 2013 ; 386( 4): 311-318.Available from: http://dx.doi.org/10.1007/s00210-013-0834-7
    • Vancouver

      Figueiredo J, Ferreira AE, Silva RL, Ulloa L, Grieco P, Cunha TM, Ferreira SH, Cunha F de Q, Kanashiro A. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis [Internet]. Naunyn-Schmiedeberg's Archives of Pharmacology. 2013 ; 386( 4): 311-318.Available from: http://dx.doi.org/10.1007/s00210-013-0834-7

    Referências citadas na obra
    Alves-Filho JC, Benjamim C, Tavares-Murta BM, Cunha FQ (2005) Failure of neutrophil migration toward infectious focus in severe sepsis: a critical event for the outcome of this syndrome. Mem Inst Oswaldo Cruz 100(Suppl I):223–226
    Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ (2009) Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci 106:4018–4023
    Andersson U, Tracey KJ (2012) Neural reflexes in inflammation and immunity. J Exp Med 209(6):1057–1068
    Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, Basile-Filho A, Tavares-Murta BM, Barja-Fidalgo C, Cunha FQ (2006) Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 108(9):2906–2913
    Bassi GS, Kanashiro A, Santin FM, de Souza GE, Nobre MJ, Coimbra NC (2012) Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic Clin Pharmacol Toxicol 110(4):359–369
    Bitto A, Polito F, Altavilla D, Irrera N, Giuliani D, Ottani A, Minutoli L, Spaccapelo L, Galantucci M, Lodi R, Guzzo G, Guarini S, Squadrito F (2011) Melanocortins protect against multiple organ dysfunction syndrome in mice. Br J Pharmacol 162(4):917–928
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462
    Catania A, Rajora N, Capsoni F, Minonzio F, Star RA, Lipton JM (1996) The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 17(4):675–679
    Catania A, Gatti S, Colombo G, Lipton JM (2004) Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56(1):1–29
    Cunha FQ, Ferreira SH (1986) The release of a neutrophil chemotactic factor from peritoneal macrophages by endotoxin: inhibition by glucocorticoids. Eur J Pharmacol 129(1–2):65–76
    Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha FQ (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9(3):153–164
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56
    Delgado M, Ganea D (2008) Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 22(8):1146–1151
    Elenkov IJ, Haskó G, Kovács KJ, Vizi ES (1995) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. J Neuroimmunol 61(2):123–131
    Giuliani D, Mioni C, Bazzani C, Zaffe D, Botticelli AR, Capolongo S, Sabba A, Galantucci M, Iannone A, Grieco P, Novellino E, Colombo G, Tomasi A, Catania A, Guarini S (2007) Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage. Br J Pharmacol 150(5):595–603
    Giuliani D, Ottani A, Altavilla D, Bazzani C, Squadrito F, Guarini S (2010) Melanocortins and the cholinergic anti-inflammatory pathway. Adv Exp Med Biol 681:71–87
    Gonzalez-Rey E, Delgado-Maroto V, Souza Moreira L, Delgado M (2010) Neuropeptides as therapeutic approach to autoimmune diseases. Curr Pharm Des 16(28):3158–3172
    Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6(12):e28330
    Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12(1):12–15
    Harding M, Kubes P (2012) Innate immunity in the vasculature: interactions with pathogenic bacteria. Curr Opin Microbiol 15(1):85–91
    Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L (2006) Splenectomy inactivates the cholinergic anti-inflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203(7):1623–1628
    Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN (2009) Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 183(1):552–559
    Kanashiro A, Pessini AC, Machado RR, Malvar Ddo C, Aguiar FA, Soares DM, do Vale ML, de Souza GE (2009) Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296(5):1631–1640
    Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24(2):316–323
    Kovach MA, Standiford TJ (2012) The function of neutrophils in sepsis. Curr Opin Infect Dis 25(3):321–327
    Laurin LP, Brissette MJ, Lepage S, Cailhier JF (2012) Regulation of experimental peritonitis: a complex orchestration. Nephron Exp Nephrol 120(1):41–46
    Mercer-Jones MA, Shrotri MS, Heinzelmann M, Peyton JC, Cheadle WG (1999) Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 65(2):249–255
    Németh T, Mócsai A (2012) The role of neutrophils in autoimmune diseases. Immunol Lett 143(1):9–19
    Ondicova K, Mravec B (2010) Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul 44(2):69–75
    Ortiz-Pomales YT, Krzyzaniak M, Coimbra R, Baird A, Eliceiri BP (2013) Vagus nerve stimulation blocks vascular permeability following burn in both local and distal sites. Burns 39(1):68–75
    Ottani A, Giuliani D, Galantucci M, Spaccapelo L, Novellino E, Grieco P, Jochem J, Guarini S (2010) Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. Eur J Pharmacol 637(1–3):124–130
    Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23(1):41–45
    Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052):98–101
    Souza GE, Ferreira SH (1985) Blockade by antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions 17(1):97–103
    Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5(6):575–581
    Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328
    Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, Mcdonald DM, Yancopoulos G (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463
    Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428
    Ulloa L (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4(8):673–684
    Valério DA, Cunha TM, Arakawa NS, Lemos HP, Da Costa FB, Parada CA, Ferreira SH, Cunha FQ, Verri WA Jr (2007) Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: inhibition of cytokine production-dependent mechanism. Eur J Pharmacol 562(1–2):155–163
    van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T (2006) Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 4(9):1997–2002
    Vida G, Peña G, Deitch EA, Ulloa L (2011a) α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol 186(7):4340–4346
    Vida G, Peña G, Kanashiro A, Thompson-Bonilla Mdel R, Palange D, Deitch EA, Ulloa L (2011b) β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 25(12):4476–4485
    Zhang XW, Liu Q, Wang Y, Thorlacius H (2001) CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo. Br J Pharmacol 133(3):413–421