Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Effect of pilot hole on biomechanical and in vivo pedicle screw–bone interface (2013)

  • Authors:
  • USP affiliated authors: SHIMANO, ANTONIO CARLOS - FMRP ; DEFINO, HELTON LUIZ APARECIDO - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s00586-013-2810-9
  • Subjects: BIOMECÂNICA; PARAFUSOS; OSSO E OSSOS; COLUNA VERTEBRAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00586-013-2810-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Informações sobre o Citescore
  • Título: European Spine Journal

    ISSN: 0940-6719

    Citescore - 2017: 2.35

    SJR - 2017: 1.535

    SNIP - 2017: 1.419


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2484181pcd 2484181 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Patrícia; ROSA, Rodrigo César; SHIMANO, Antonio Carlos; DEFINO, Helton Luiz Aparecido. Effect of pilot hole on biomechanical and in vivo pedicle screw–bone interface. European Spine Journal, Heidelberg, v. 22, n. 8, p. 1829-1836, 2013. Disponível em: < http://dx.doi.org/10.1007/s00586-013-2810-9 > DOI: 10.1007/s00586-013-2810-9.
    • APA

      Silva, P., Rosa, R. C., Shimano, A. C., & Defino, H. L. A. (2013). Effect of pilot hole on biomechanical and in vivo pedicle screw–bone interface. European Spine Journal, 22( 8), 1829-1836. doi:10.1007/s00586-013-2810-9
    • NLM

      Silva P, Rosa RC, Shimano AC, Defino HLA. Effect of pilot hole on biomechanical and in vivo pedicle screw–bone interface [Internet]. European Spine Journal. 2013 ; 22( 8): 1829-1836.Available from: http://dx.doi.org/10.1007/s00586-013-2810-9
    • Vancouver

      Silva P, Rosa RC, Shimano AC, Defino HLA. Effect of pilot hole on biomechanical and in vivo pedicle screw–bone interface [Internet]. European Spine Journal. 2013 ; 22( 8): 1829-1836.Available from: http://dx.doi.org/10.1007/s00586-013-2810-9

    Referências citadas na obra
    Abshire BB, McLain RF, Valdevit A et al (2001) Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J 1:408–414
    Aebi M, Etter C, Kehl T et al (1987) Stabilization of the lower thoracic and lumbar spine with the internal spinal skeletal fixation system. Indications, techniques, and first results of treatment. Spine (Phila Pa 1976) 12:544–551
    Benzel EC (2011) Implant-bone interfaces. In: Benzel EC (ed) Biomechanics of spinal stabilization. Thieme, New York, pp 155–170
    Brink J, Meraw SJ, Sarment DP (2007) Influence of implant diameter on surrounding bone. Clin Oral Implants Res 18:563–568
    Carmouche JJ, Molinari RW, Gerlinger T et al (2005) Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine. J Neurosurg Spine 3:364–370
    Chatzistergos PE, Magnissalis EA, Kourkoulis SK (2010) A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys 32:145–154
    Chatzistergos PE, Sapkas G, Kourkoulis SK (2010) The Influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Spine 35:E332–E337
    Chavassieux P, Pastoureau P, Boivin G et al (1991) Dose effects on ewe bone remodeling of short-term sodium fluoride administration–a histomorphometric and biochemical study. Bone 12:421–442
    Chen SI, Lin RM, Chang CH (2003) Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 25:275–282
    Cho W, Cho SK, Wu C (2010) The Biomechanics of pedicle screw-based instrumentation. J Bone Jt Surg 92:1061–1065
    Coe JD, Warden KE, Herzig MA et al (1990) Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 15:902–907
    Conrad BP, Cordista AG, Horodyski M et al (2005) Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech 18:506–510
    Cook SD, Salkeld SL, Whitecloud TS et al (2000) Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord 13:230–236
    Daftari TK, Horton WC, Hutton WC (1994) Correlations between screw hole preparation, torque of insertion, and pullout strength for spinal screws. J Spinal Disord 7:139–145
    Defino HL, Rosa RC, Silva P et al (2009) The effect of repetitive pilot-hole use on the insertion torque and pullout strength of vertebral system screws. Spine (Phila Pa 1976) 34:871–876
    Defino HLA, Wich C, Shimano A et al (2007) Influência do diâmetro do orifício piloto na resistência ao arrancamento dos parafusos do corpo vertebral. Acta Ortop Bras 15:76–79
    Defino HLA, Vendrame JR (2010) Role of cortical and cancellous bone of the vertebral pedicle in implant fixation. Eur Spine J 10:325–333
    den Boer FC, Patka P, Bakker FC (1999) New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res 17:654–660
    Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101–107
    Erkan S, Hsu B, Wu C et al (2010) Alignment of pedicle screws with pilot holes: can tap-ping improve screw trajectory in thoracic spines? Eur Spine J 19:71–77
    Hsu CC, Chao CK, Wang JL et al (2005) Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 23:788–794
    Inceoglu S, Ehlert M, Akbay A et al (2006) Axial cyclic behavior of the bone-screw interface. Med Eng Phys 28:888–893
    Inceoglu S, Ferrara L, McLain RF (2004) Pedicle screw fixation strength: pullout versus insertional torque. Spine J 4:513–518
    Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714
    Lill CA, Schlegel U, Wahl D et al (2000) Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180 degrees. J Spinal Disord 13:259–266
    Lim TH, Kim JG, Fujiwara A et al (2001) Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation. Spine 26:2498–2503
    Kwok AW, Finkelstein JA, Woodside T et al (1996) Insertional torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone. Spine 21:2429–2434
    Mallaoglu N, Çetiner S, Aspaslan C (2003) The early tissue response to titanium and Lactosorb screws. Dent Traumatol 19:139–144
    Meredith N (1998) Assessment of implant stability as a prognostic determinant. Int J Prosthodont 11:491–501
    Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284S
    Pastoureau P, Vergnaud P, Meunier PJ (1993) Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J Bone Miner Res 8:1417–1426
    Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10
    Pfeiffer FM, Abernathie DL, Smith DE (2006) A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine 31:E867–E870
    Porto MA, Silva P, Rosa R et al (2011) Experimental in vivo acute and chronic biomechanical and histomorphometrical comparison of self-drilling and self-tapping anterior cervical screws. Eur Spine J 21:956–963
    Sanden B, Olerud C, Johansson C et al (2001) Improved bone-screw interface with hydroxyapatite coating: an in vivo study of loaded pedicle screws in sheep. Spine (Phila Pa 1976) 26:2673–2678
    Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopedic screws in vivo. Clin Orthop Relat Res 108:115–126
    Schwartz Z, Raz P, Zhao G et al (2008) Effect of micrometer-scale roughness of the surface of Ti6Al4 V pedicle screws in vitro and in vivo. J Bone Jt Surg Am 90:2485–2498
    Sterba W, Kim DG, Fyhrie DP et al (2007) Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech 22:385–391
    Togni F, Baras F, Ribas MO, Taha MO (2011) Histomorphometric analysis of bone tissue repair in rabbits after insertion of titanium screws under different torque. Acta Cir Bras 26:261–266
    Wittenberg RH, Lee KS, Shea M et al (1993) Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res 296:278–287
    Xue Q, Li H, Zou X et al (2010) Alendronate treatment improves bone-pedicle screw interface fixation in posterior lateral spine fusion: an experimental study in a porcine model. Int Orthop 34:447–451
    Zideblick TA, Kunz DN, Cooke ME et al (1993) Pedicle screw pullout strength. Correlation with insertional torque. Spine 18:1673–1676