Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Smoothing: a natural way to detect contour features (2014)

  • Authors:
  • USP affiliated authors: GONZAGA, ADILSON - EESC
  • USP Schools: EESC
  • DOI: 10.1007/s11042-012-1237-3
  • Subjects: RECONHECIMENTO DE PADRÕES; ENTROPIA; CÓRNEA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11042-012-1237-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11042-012-1237-3 (Fonte: Unpaywall API)

    Título do periódico: Multimedia Tools and Applications

    ISSN: 1380-7501,1573-7721



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Multimedia Tools and Applications

    ISSN: 1380-7501

    Citescore - 2017: 1.41

    SJR - 2017: 0.287

    SNIP - 2017: 0.881


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EESC2490343-10PROD-017330
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LOURO, Antonio Henrique Figueira; MACHADO, Will Ricardo dos Santos; GONZAGA, Adilson. Smoothing: a natural way to detect contour features. Multimedia Tools and Applications, New York, v. 70, n. 3, p. 2111-2124, 2014. Disponível em: < http://dx.doi.org/10.1007/s11042-012-1237-3 > DOI: 10.1007/s11042-012-1237-3.
    • APA

      Louro, A. H. F., Machado, W. R. dos S., & Gonzaga, A. (2014). Smoothing: a natural way to detect contour features. Multimedia Tools and Applications, 70( 3), 2111-2124. doi:10.1007/s11042-012-1237-3
    • NLM

      Louro AHF, Machado WR dos S, Gonzaga A. Smoothing: a natural way to detect contour features [Internet]. Multimedia Tools and Applications. 2014 ; 70( 3): 2111-2124.Available from: http://dx.doi.org/10.1007/s11042-012-1237-3
    • Vancouver

      Louro AHF, Machado WR dos S, Gonzaga A. Smoothing: a natural way to detect contour features [Internet]. Multimedia Tools and Applications. 2014 ; 70( 3): 2111-2124.Available from: http://dx.doi.org/10.1007/s11042-012-1237-3

    Referências citadas na obra
    Ansari N, Delp E (1991) On detecting dominant points. Pattern Recognition 24(5):441–451
    Asada H, Brady M (1986) The curvature primal sketch. Pattern analysis and machine 4. Intelligence, IEEE Transactions 1:2–14
    Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3):183
    Biederman (1987) Recognition-by-components: A theory of human image understanding. Psychol Rev 94:115–147
    Chetverikov D and Szabo Z (1999) A simple and efficient algorithm for detection of high curvature points in planar curves. In: 23rd Workshop of Australian Pattern Recognition Group, 23: 175–184
    Cornic P (1997) Another look at the dominant point detection of digital curves. Pattern Recognit Lett 18:13–25
    Dutta A, Kar BNC (2008) Corner detection algorithms for digital images in last three decades. IETE Tech Rev 25(3):123–132
    Freeman H, Davis L (1977) A corner-finding algorithm for chain-coded curves. Computers, IEEE Transactions 100(3):297–303
    Guru D, Dinesh R, and Nagabhushan P (2004) Boundary based corner detection and localization using new cornerity index: a robust approach, in First Canadian Conference on Computer and Robot Vision, pp 417–423
    Harris C and Stephens M (1988) A combined corner and edge detector. In Alvey Vision Conference, pp. 147–151
    Kitchen L, Rosenfeld A (1982) Gray-level corner detection. Pattern Recognit Lett 1:95–102
    Lee J-S, Sun Y-N, Chen C-H, Tsai C-T (1993) Wavelet based corner detection. Pattern Recognition 26:853–865
    Li Z (1995) An examination of algorithms for the detection of critical points on digital cartographic lines. Cartogr J 32:121–125
    Li B (1996) Repeatedly smoothing, discrete scale-space evolution and dominant point detection. Pattern Recognition 29:1049–1059
    Liu H.-C and Srinath MD (1990) Corner detection from chain-code. Pattern Recognition (1-2), 1990, 23: 51–68
    Liu H-C, Srinath MD (1990) Corner detection from chain code. Pattern Recognition 23:51–68
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Computer Science Department, University of British Columbia, Vancouver
    Lynn Beus H, Tiu S (1987) An improved corner detection algorithm based on chain-coded plane curves. Pattern Recognition 20(3):291–296
    Mokhtarian F, Mohanna F (2006) Performance evaluation of corner detectors using consistency and accuracy measures. Computer Vision and Image Understanding 102(1):81–94
    Mokhtarian F, Suomela R (1998) Robust image corner detection through curvature scale space. Pattern Analysis and Machine Intelligence. IEEE Transactions 20(12):1376–1381
    Moravec HP (1977) Towards automatic visual obstacle avoidance. Proc. Internat. Joint Conf. on Artificial Intelligence, In, p 584
    Pedrosa GV, Barcelos CAZ (2010) Anisotropic diffusion for effective shape corner point detection. Pattern Recognit Lett 31:1658–1664
    Pei S-C, Lin C-N (1992) The detection of dominant points on digital curves by scale-space filtering. Pattern Recognition 25:1307–1314
    Rattarangsi A, Chin RT (1992) Scale-based detection of corners of planar curves. IEEE Trans Pattern Anal Mach Intelligence 14:430–449
    Rosenfeld A, Johnston E (1973) Angle detection on digital curves. Computers, IEEE Transactions 100(9):875–878
    Rosenfeld A, Weszka J (1975) An improved method of angle detection on digital curves. Computers, IEEE Transactions 100(9):940–941
    Sarfraz M (2008) Interactive curve modeling with applications to computer graphics, vision and image processing, Springer
    Shi J and Tomasi C (1994) Good features to track. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 94), pp. 593–600
    Smith S, Brady J (1997) SUSAN-A new approach to low level image processing. Int J Comput Vis 23(1):45–78
    Sobania A, Evans J (2005) Morphological corner detector using paired triangular structuring elements. Pattern recognition 38(7):1087–1098
    Teh CH, Chin RT (1989) On the detection of dominant points on digital curves. IEEE Trans Pattern Anal Mach Intell 11:859–872
    Zhang X, Wang H, Smith A, Ling X, Lovell B, Yang D (2010) Corner detection based on gradient correlation matrices of planar curves. Pattern Recognition 43(4):1207–1223