Ver registro no DEDALUS
Exportar registro bibliográfico



Physiological adaptations during endurance training below anaerobic threshold in rats (2013)

  • Authors:
  • USP affiliated authors: PAPOTI, MARCELO - EEFERP
  • USP Schools: EEFERP
  • DOI: 10.1007/s00421-013-2616-9
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00421-013-2616-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: European Journal of Applied Physiology

    ISSN: 1439-6319

    Citescore - 2017: 2.45

    SJR - 2017: 1.186

    SNIP - 2017: 1.215

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFER2493843pcd 2493843 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ARAUJO, Gustavo Gomes de; PAPOTI, Marcelo; DELBIN, Maria Andréia; ZANESCO, Angelina; GOBATTO, Cláudio Alexandre. Physiological adaptations during endurance training below anaerobic threshold in rats. European Journal of Applied Physiology, Heidelberg, v. 113, n. 7, p. 1859\20131870, 2013. Disponível em: < > DOI: 10.1007/s00421-013-2616-9.
    • APA

      Araujo, G. G. de, Papoti, M., Delbin, M. A., Zanesco, A., & Gobatto, C. A. (2013). Physiological adaptations during endurance training below anaerobic threshold in rats. European Journal of Applied Physiology, 113( 7), 1859\20131870. doi:10.1007/s00421-013-2616-9
    • NLM

      Araujo GG de, Papoti M, Delbin MA, Zanesco A, Gobatto CA. Physiological adaptations during endurance training below anaerobic threshold in rats [Internet]. European Journal of Applied Physiology. 2013 ; 113( 7): 1859\20131870.Available from:
    • Vancouver

      Araujo GG de, Papoti M, Delbin MA, Zanesco A, Gobatto CA. Physiological adaptations during endurance training below anaerobic threshold in rats [Internet]. European Journal of Applied Physiology. 2013 ; 113( 7): 1859\20131870.Available from:

    Referências citadas na obra
    Armstrong LE, VanHeest JL (2002) The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med 32:185–209
    Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J (2003) The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 33:407–426
    Bocalini DS, Carvalho EV, de Sousa AF, Levy RF, Tucci PJ (2010) Exercise training-induced enhancement in myocardial mechanics is lost after 2 weeks of detraining in rats. Eur J Appl Physiol 109:909–914
    Booth FW, Laye MJ, Spangenburg EE (2010) Gold standards for scientists who are conducting animal-based exercise studies. J Appl Physiol 108:219–221
    Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230
    Cambri LT, Dalia RA, Ribeiro C, Rostom de Mello MA (2010) Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet. Appl Physiol Nutr Metab 35:490–497
    Cambri LT, de Araujo GG, Ghezzi AC, Botezelli JD, Mello MA (2011) Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet. Lipids Health Dis 21(10):164
    Carrow RE, Brown RE, Van Huss WD (1967) Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats. Anat Rec 159:33–39
    Carvalho JF, Masuda MO, Pompeu FAMS (2005) Method for diagnosis and control of aerobic training in rats based on lactate threshold. Comp Biochem Physiol A 140:409–413
    Clavel S, Farout L, Briand M, Briand Y, Jouanel P (2002) Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Eur J Appl Physiol 87:193–201
    Cohen D (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale
    Contarteze RVL, Manchado FB, Gobatto CA, Mello MAR (2008) Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp Biochem Physiol A Mol Integr Physiol 151:415–422
    Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20:249–254
    Costill DL, Thomas R, Robergs RA, Pascoe D, Lambert C, Barr S, Fink WJ (1991) Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc 23:371–377
    Dawson CA, Horvath SM (1970) Swimming in small laboratory animals. Med Sci Sports 2:51–78
    de Araujo GG, Papoti M, Manchado FB, Mello MA, Gobatto CA (2007) Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp Biochem Physiol A Mol Integr Physiol 148:888–892
    de Araujo GG, Papoti M, Dos Reis IG, de Mello MA, Gobatto CA (2012) Physiological responses during linear periodized training in rats. Eur J Appl Physiol 112:839–852
    Dubois B, Gilles KA, Hamilton JK, Rebers PA (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 8:350–356
    Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490
    Fitts RH, Costill DL, Gardetto PR (1989) Effect of swim exercise training on human muscle fiber function. J Appl Physiol 66:465–475
    Flynn MG, Pizza FX, Boone JB Jr, Andres FF, Michaud TA, Rodriguez-Zayas JR (1994) Indices of training stress during competitive running and swimming seasons. Int J Sports Med 15:21–26
    Fry RW, Morton AR, Garcia-Webb P, Crawford GP, Keast D (1992) Biological responses to overload training in endurance sports. Eur J Appl Physiol Occup Physiol 64:335–344
    García-Pallarés J, García-Fernández M, Sánchez-Medina L, Izquierdo M (2010) Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol 110:99–107
    Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130:21–27
    Habouzit E, Richard H, Sanchez H, Koulmann N, Serrurier B, Monnet R, Ventura-Clapier R, Bigard X (2009) Decreased muscle ACE activity enhances functional response to endurance training in rats, without change in muscle oxidative capacity or contractile phenotype. J Appl Physiol 107:346–353
    Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34:967–981
    Hargreaves M (2004) Muscle glycogen and metabolic regulation. Proc Nutr Soc 63:217–220
    Hohl R, Ferraresso RL, De Oliveira RB, Lucco R, Brenzikofer R, De Macedo DV (2009) Development and characterization of an overtraining animal model. Med Sci Sports Exerc 41:1155–1163
    Issurin VB (2010) New horizons for the methodology and physiology of training periodization. Sports Med 40:189–206
    Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292
    Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC (2007) Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev 128:267–275
    Manchado FB, Gobatto CA, Voltarelli FA, Mello MAR (2006) Nonexhaustive test for aerobic capacity determination in swimming rats. Appl Physiol Nutr Metab 31:731–736
    Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J (2004) Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol 91:140–146
    Nakatani A, Han DH, Hansen PA, Nolte LA, Host HH, Hickner RC, Holloszy JO (1997) Effect of endurance exercise training on muscle glycogen supercompensation in rats. J Appl Physiol 82:711–715
    Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84
    Pereira BC, Filho LA, Alves GF, Pauli JR, Ropelle ER, Souza CT, Cintra DE, Saad MJ, Silva AS (2012) A new overtraining protocol for mice based on downhill running sessions. Clin Exp Pharmacol Physiol 39:793–798
    Pilis W, Zarzeczny R, Langfort J, Kaciuba-Uściłko H, Nazar K, Wojtyna J (1993) Anaerobic threshold in rats. Comp Biochem Physiol Comp Physiol 106:285–289
    Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266:R375–R380
    Reis IGM, de Araujo GG, Gobatto CA (2011) Maximal lactate steady state in swimming rats by a body density-related method of workload quantification. Comp Exerc Physiol 7:179–184
    Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16:49–56
    Tegtbur U, Busse MW, Braumann KM (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc 25:620–627
    Urhausen A, Weiler B, Coen B, Kindermann W (1994) Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic threshold. Eur J Appl Physiol Occup Physiol 69:16–20
    Vandenberghe K, Richter EA, Hespel P (1999) Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiol Scand 165:307–314
    Voltarelli FA, Gobatto CA, Mello MAR (2002) Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res 35:1–6