Ver registro no DEDALUS
Exportar registro bibliográfico



Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends (2014)

  • Authors:
  • DOI: 10.1007/s10570-014-0262-y
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Cellulose
    • ISSN: 0969-0239
    • Volume/Número/Paginação/Ano: v. 21, n. 4, p. 2247-2259, Aug. 2014
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10570-014-0262-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10570-014-0262-y (Fonte: Unpaywall API)

    Título do periódico: Cellulose

    ISSN: 0969-0239,1572-882X

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Cellulose

    ISSN: 0969-0239

    Citescore - 2017: 4.12

    SJR - 2017: 1.047

    SNIP - 2017: 1.299

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MATTOS, R. I.; TAMBELLI, Caio Eduardo de Campos; RAPHAEL, E.; et al. Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends. Cellulose, Dordrecht, Springer, v. 21, n. 4, p. 2247-2259, 2014. Disponível em: < > DOI: 10.1007/s10570-014-0262-y.
    • APA

      Mattos, R. I., Tambelli, C. E. de C., Raphael, E., Silva, I. D. A., Magon, C. J., Donoso, J. P., & Pawlicka, A. (2014). Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends. Cellulose, 21( 4), 2247-2259. doi:10.1007/s10570-014-0262-y
    • NLM

      Mattos RI, Tambelli CE de C, Raphael E, Silva IDA, Magon CJ, Donoso JP, Pawlicka A. Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends [Internet]. Cellulose. 2014 ; 21( 4): 2247-2259.Available from:
    • Vancouver

      Mattos RI, Tambelli CE de C, Raphael E, Silva IDA, Magon CJ, Donoso JP, Pawlicka A. Proton mobility and copper coordination in polysaccharide and gelatin-based bioblends and polyblends [Internet]. Cellulose. 2014 ; 21( 4): 2247-2259.Available from:

    Referências citadas na obra
    Bohmer R, Jeffrey KR, Vogel M (2007) Solid-state LiNMR with applications to the translational dynamics in ion conductors. Prog Nucl Magn Reson Spectrosc 50(2–3):87–174. doi: 10.1016/j.pnmrs.2006.12.001
    Boobalan S, Rao PS (2010) Structural elucidation of Cu(II) ion doped in hexaaquozincdiaquobis(malonato)zincate host by EPR spectroscopy. J Phys Chem Solids 71(11):1527–1533. doi: 10.1016/j.jpcs.2010.07.019
    Carl PJ, Larsen SC (2000) EPR study of copper-exchanged zeolites: effects of correlated g- and A-strain, Si/Al ratio, and parent zeolite. J Phys Chem B 104(28):6568–6575. doi: 10.1021/Jp000015j
    Chanda M, Roy SK (2006) Plastics technology handbook. In, CRC Press, pp 896
    Cheng MY, Deng JU, Yang F, Gong YD, Zhao NM, Zhang XF (2003) Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24(17):2871–2880. doi: 10.1016/S0142-9612(03)00117-0
    Chung SH, Heitjans P, Winter R, Bzaucha W, Florjanczyk Z, Onoda Y (1998) Enhancement of ionic conductivity by the addition of plasticizers in cationic monoconducting polymer electrolytes. Solid State Ionics 112(1–2):153–159. doi: 10.1016/s0167-2738(98)00229-x
    Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6(1):13–26. doi: 10.1002/mabi.200500151
    Cremona M, Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517(3):1016–1020. doi: 10.1016/j.tsf.2008.06.011
    Donoso JP, Cavalcante MG, Bonagamba TJ, Nascimento OR, Panepucci H (1995) Magnetic-resonance study of water-absorption in some peg-lithium salt polymer electrolytes. Electrochim Acta 40(13–14):2357–2360. doi: 10.1016/0013-4686(95)00193-I
    Donoso JP, Lopes LVS, Pawlicka A, Fuentes S, Retuert PJ, Gonzalez G (2007) Nuclear magnetic resonance study of PEO-chitosan based polymer electrolytes. Electrochim Acta 53(4):1455–1460. doi: 10.1016/j.electacta.2007.04.101
    Eckert H (1992) Structural characterization of noncrystalline solids and glasses using Solid-state Nmr. Prog Nucl Magn Reson Spectrosc 24(3):159–293. doi: 10.1016/0079-6565(92)80001-V
    El-Hefian EMA, Nasef MM, Yahaya AH, Khan RA (2010) Preparation and characterization of chitosan/agar blends: rheological and thermal studies. J Chil Chem Soc 55(1):130–136
    Ganesan R, Viswanathan B (2004) Physicochemical and catalytic properties of copper ethylenediamine complex encapsulated in various zeolites. J Phys Chem B 108(22):7102–7114. doi: 10.1021/Jp037765o
    Giua M, Panero S, Scrosati B, Cao X, Greenbaum SG (1996) Investigation of mixed cation effects in PEO(9)Zn(1-x)Cu(x)(CF3SO3)(2) polymer electrolytes. Solid State Ionics 83(1–2):73–78. doi: 10.1016/0167-2738(95)00216-2
    Gomez-Estaca J, Gomez-Guillen MC, Fernandez-Martin F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films. Food Hydrocoll 25(6):1461–1469. doi: 10.1016/j.foodhyd.2011.01.007
    Guo T, Zhao JN, Chang JB, Ding Z, Hong H, Chen JN, Zhang JF (2006) Porous chitosan–gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta 1 for chondrocytes proliferation. Biomaterials 27(7):1095–1103. doi: 10.1016/j.biomaterials.2005.08.015
    Hathaway BJ, Billing DE (1970) Electronic properties and stereochemistry of mono-nuclear complexes of copper(Ii) ion. Coord Chem Rev 5(2):143. doi: 10.1016/S0010-8545(00)80135-6
    Hong H, Liu CS, Wu WJ (2009) Preparation and characterization of chitosan/PEG/gelatin composites for tissue engineering. J Appl Polym Sci 114(2):1220–1225. doi: 10.1002/App.30619
    Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26(36):7616–7627. doi: 10.1016/j.biomaterials.2005.05.036
    Justi KC, Laranjeira MCM, Neves A, Mangrich AS, Favere VT (2004) Chitosan functionalized with 2[-bis-(pyridylmethyl) aminomethyl]4-methyl-6-formyl-phenol: equilibrium and kinetics of copper(II) adsorption. Polymer 45(18):6285–6290. doi: 10.1016/j.polymer.2004.07.009
    Kadir MFZA, Teo LP, Majid SR, Arof AK (2009) Conductivity studies on plasticised PEO/chitosan proton conducting polymer electrolyte. Mater Res Innov 13(3):259–262. doi: 10.1179/143307509x440460
    Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochim Acta 55(4):1475–1482. doi: 10.1016/j.electacta.2009.05.011
    Kivelson D, Neiman R (1961) ESR studies on bonding in copper complexes. J Chem Phys 35(1):149–155. doi: 10.1063/1.1731880
    Kramareva NV, Finashina ED, Kucherov AV, Kustov LM (2003) Copper complexes stabilized by chitosans: peculiarities of the structure, redox, and catalytic properties. Kinet Catal 44(6):793–800
    Kreuer KD (1997) Fast proton conductivity: a phenomenon between the solid and the liquid state? Solid State Ionics 94(1–4):55–62
    Lopes LVS, Dragunski DC, Pawlicka A, Donoso JP (2003) Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes. Electrochim Acta 48(14–16):2021–2027. doi: 10.1016/S0013-4686(03)00181-6
    Mattos RI, Pawlicka A, Lima JF, Tambelli CE, Magon CJ, Donoso JP (2010) Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes. Electrochim Acta 55(4):1396–1400. doi: 10.1016/j.electacta.2009.04.038
    Ng STC, Forsyth M, MacFarlane DR, Garcia M, Smith ME, Strange JH (1998) Composition effects in polyetherurethane-based solid polymer electrolytes. Polymer 39(25):6261–6268. doi: 10.1016/S0032-3861(98)00153-0
    Ogihara W, Sun JZ, Forsyth M, MacFarlane DR, Yoshizawa M, Ohno H (2004) Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. Electrochim Acta 49(11):1797–1801. doi: 10.1016/j.electacta.2003.12.011
    Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J Phys Chem A 112(38):8888–8895. doi: 10.1021/jp801573h
    Pawlicka A, Mattos RI, Lima JF, Tambelli CE, Magon CJ, Donoso JP (2011) Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte. Electrochim Acta 57:187–191. doi: 10.1016/j.electacta.2011.07.062
    Pawlicka A, Mattos RI, Tambelli CE, Silva IDA, Magon CJ, Donoso JP (2013) Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. J Memb Sci 429:190–196. doi: 10.1016/j.memsci.2012.11.048
    Peisach J, Blumberg WE (1974) Structural implications derived from analysis of electron-paramagnetic resonance-spectra of natural and artificial copper proteins. Arch Biochem Biophys 165(2):691–708. doi: 10.1016/0003-9861(74)90298-7
    Pilbrow JR (1990) Transition Ion Electron Paramagnetic Resonance. Oxford University Press, Oxford
    Procter IM, Hathaway BJ, Nicholls P (1968) The electronic properties and stereochemistry of copper(2) Ion. I. Bis(Ethylenediamine)copper(2) complexes. J Chem Soc A 7:1678–1684. doi: 10.1039/J19680001678
    Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459. doi: 10.1016/j.electacta.2009.06.010
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. doi: 10.1016/j.progpolymsci.2006.06.001
    Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35(10):1834–1841. doi: 10.1016/j.optmat.2013.03.004
    Singh BK, Bhojak N, Mishra P, Garg BS (2008) Copper(II) complexes with bioactive carboxyamide: synthesis, characterization and biological activity. Spectrochim Acta A 70(4):758–765. doi: 10.1016/j.saa.2007.09.008
    Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55. doi: 10.1016/j.jmr.2005.08.013
    Stosser R, Sebastian S, Scholz G, Willer M, Jeschke G, Schweiger A, Nofz M (1999) Pulse EPR spectroscopy of Cu2+-doped inorganic glasses. Appl Magn Reson 16(4):507–528
    Vedeanu N, Magdas DA, Stefan R (2012) Structural modifications induced by addition of copper oxide to lead-phosphate glasses. J Non Cryst Solids 358(23):3170–3174. doi: 10.1016/j.jnoncrysol.2012.08.003
    Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53(4):1404–1408
    Walderhaug H, Soderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56(4):406–425. doi: 10.1016/j.pnmrs.2010.04.002
    Wilkening M, Bork D, Indris S, Heitjans P (2002) Diffusion in amorphous LiNbO3 studied by Li-7 NMR comparison with the nano- and microcrystalline material. Phys Chem Chem Phys 4(14):3246–3251. doi: 10.1039/B201193j
    Winter R, Siegmund K, Heitjans P (1997) Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10. J Non Cryst Solids 212(2–3):215–224. doi: 10.1016/S0022-3093(96)00654-0
    Wright PV (1975) Electrical conductivity in complexes of poly(ethylene oxide). British Polym J 7:319–327
    Yalpani M (1988) Polysaccharides, synthesis, modifications and structure/property relations. Elsevier, Amsterdam
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602. doi: 10.1016/j.progpolymsci.2006.03.002
    Yu B, Zhou F, Wang CW, Liu WM (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43(6):2699–2707. doi: 10.1016/j.eurpolymj.2007.03.027