Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Doubly censored power-normal regression models with inflation (2015)

  • Authors:
  • USP affiliated authors: BOLFARINE, HELENO - IME
  • USP Schools: IME
  • DOI: 10.1007/s11749-014-0406-2
  • Subjects: ESTATÍSTICA; DADOS CENSURADOS
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Test
    • ISSN: 1863-8260
    • Volume/Número/Paginação/Ano: v. 24, n. 2, p. 265-286, 2015
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11749-014-0406-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11749-014-0406-2 (Fonte: Unpaywall API)

    Título do periódico: TEST

    ISSN: 1133-0686,1863-8260



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2649570-10PROD-2649570
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARTÍNEZ-FLÓREZ, Guillermo; BOLFARINE, Heleno; GÓMEZ, Héctor W. Doubly censored power-normal regression models with inflation. Test, Heidelberg, v. 24, n. 2, p. 265-286, 2015. Disponível em: < http://dx.doi.org/10.1007/s11749-014-0406-2 > DOI: 10.1007/s11749-014-0406-2.
    • APA

      Martínez-Flórez, G., Bolfarine, H., & Gómez, H. W. (2015). Doubly censored power-normal regression models with inflation. Test, 24( 2), 265-286. doi:10.1007/s11749-014-0406-2
    • NLM

      Martínez-Flórez G, Bolfarine H, Gómez HW. Doubly censored power-normal regression models with inflation [Internet]. Test. 2015 ; 24( 2): 265-286.Available from: http://dx.doi.org/10.1007/s11749-014-0406-2
    • Vancouver

      Martínez-Flórez G, Bolfarine H, Gómez HW. Doubly censored power-normal regression models with inflation [Internet]. Test. 2015 ; 24( 2): 265-286.Available from: http://dx.doi.org/10.1007/s11749-014-0406-2

    Referências citadas na obra
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
    Arellano-Valle RB, Azzalini A (2008) The centred parametrization for the multivariate skew-normal distribution. J Multivar Anal 99:1362–1382
    Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178
    Bayes C, Bazan J, García C (2012) A new robust regression model for proportions. Bayesian Anal 7:841–866
    Branscum AJ, Johnson WO, Thurmond MC (2007) Bayesian beta regression: applications to household expenditure data and genetic distance between foot-and-mouth deseases viruses. Aust N Z J Stat 49:287–301
    Chai H, Bailey K (2008) Use of log-normal distribution in analysis of continuous data with a discrete component at zero. Stat Med 27:3643–3655
    Cox DR (2006) Principles of statistical inference. Cambridge University Press, London
    Cragg J (1971) Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 39:829–844
    Cribari-Neto F, Vasconcellos KLP (2002) Nearly unbiased maximum likelhood estimation for the beta distribution. J Stat Comput Simul 72:107–118
    Durrans SR (1992) Distributions of fractional order statistics in hydrology. Water Resour Res 28:1649–1655
    Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815
    Galvis DM, Bandyopahyay D, Lachos VH (2013) Augmented mixed beta regression models for periodontal proportion data. Stat Med. doi: 10.1002/sim.6179
    Gupta D, Gupta RC (2008) Analyzing skewed data by power normal model. Test 17:197–210
    Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on $$(0, 1)$$ ( 0 , 1 ) : percentages, proportions and fractions. Stat Model 3:193–213
    Lehmann EL (1953) A grafhical estimation of mixed Weibull parameter in life testing electron tubes. Technometrics 1:389–407
    Martínez-Flórez G, Bolfarine H, Gómez HW (2013a) Asymmetric regression models with limited responses with an application to antibody response to vaccine. Biom J 55:156–172
    Martínez-Flórez G, Bolfarine H, Gómez HW (2013b) The alpha-power tobit model. Commun Stat Theory Methods 42:633–643. Special issue on multivariate distributions
    Moulton L, Halsey NA (1995) A mixture model with detection limits for regression analysses of antibody response to vaccine. Biometrics 51:1570–1578
    Moulton L, Halsey NA (1996) A mixted gamma model for regression analyses of quantitative assay data. Vaccine 14:1154–1158
    Ospina R (2008) Modelo de Regressao Beta Inflacionados. Tese (Doutorado em Estatística), Universidade de Sao Paulo
    Ospina R, Ferrari SLP (2010) Inflated beta distributions. Stat Pap 51:111–126
    Ospina R, Ferrari SLP (2012) A general class of zero-or-one inflated beta regression models. Comput Stat Data Anal 56:1609–1623
    Paolino P (2001) Maximum likelihood estimation of models with beta-distributed dependent variables. Polit Anal 9:325–346
    Pewsey A, Gómez HW, Bolfarine H (2012) Likelihood-based inference for power distributions. Test 21:775–789
    Tobin J (1958) Estimation of relationships for limited dependent variables. Econometrica 26:24–36
    Vasconcellos KLP, Cribari-Neto F (2005) Improved maximum likelihood estimation in a new class of beta regression models. Braz J Probab Stat 19:13–31