Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to 'Hg POT.2+' ion and a wide range of pH (2014)

  • Authors:
  • USP affiliated authors: JORGE, JOAO ATILIO - FFCLRP ; POLIZELI, MARIA DE LOURDES TEIXEIRA DE MORAES - FFCLRP
  • USP Schools: FFCLRP; FFCLRP
  • DOI: 10.1007/s12010-014-1051-7
  • Subjects: ASPERGILLUS; ENZIMAS (ISOLAMENTO E PURIFICAÇÃO); BIOTECNOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12010-014-1051-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12010-014-1051-7 (Fonte: Unpaywall API)

    Título do periódico: Applied Biochemistry and Biotechnology

    ISSN: 0273-2289,1559-0291



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Applied Biochemistry and Biotechnology

    ISSN: 0273-2289

    Citescore - 2017: 2.02

    SJR - 2017: 0.571

    SNIP - 2017: 0.8


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2650419pcd 2650419 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MICHELIN, Michele; SILVA, Tony M.; JORGE, João Atílio; POLIZELI, Maria de Lourdes Teixeira de Moraes. Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to 'Hg POT.2+' ion and a wide range of pH. Applied Biochemistry and Biotechnology, Totowa, v. 174, p. 206-220, 2014. Disponível em: < http://dx.doi.org/10.1007/s12010-014-1051-7 > DOI: 10.1007/s12010-014-1051-7.
    • APA

      Michelin, M., Silva, T. M., Jorge, J. A., & Polizeli, M. de L. T. de M. (2014). Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to 'Hg POT.2+' ion and a wide range of pH. Applied Biochemistry and Biotechnology, 174, 206-220. doi:10.1007/s12010-014-1051-7
    • NLM

      Michelin M, Silva TM, Jorge JA, Polizeli M de LT de M. Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to 'Hg POT.2+' ion and a wide range of pH [Internet]. Applied Biochemistry and Biotechnology. 2014 ; 174 206-220.Available from: http://dx.doi.org/10.1007/s12010-014-1051-7
    • Vancouver

      Michelin M, Silva TM, Jorge JA, Polizeli M de LT de M. Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to 'Hg POT.2+' ion and a wide range of pH [Internet]. Applied Biochemistry and Biotechnology. 2014 ; 174 206-220.Available from: http://dx.doi.org/10.1007/s12010-014-1051-7

    Referências citadas na obra
    Andreaus, J., Ferreira-Filho, E. X., & Bon, E. P. S. (2008). In C. T. Hou & J. F. Shaw (Eds.), Biocatalysis and bioenergy: biotechnology of holocellulose degrading enzymes (pp. 197–229). New York: Wiley.
    Teixeira, R. S. S., Siqueira, F. G., Souza, M. V., Ferreira-Filho, E. X., & Bon, E. P. S. (2010). Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. Journal of Industrial Microbiology and Biotechnology, 37, 1041–1051.
    Bajpai, P. (1997). Microbial xylanolytic enzyme system: properties and application. Advances in Applied Microbiology, 43, 141–194.
    Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial application. Applied Microbiology and Biotechnology, 67, 577–591.
    Amita, R. S., Shah, R. K., & Madamwar, D. (2006). Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresource Technology, 97, 2047–2053.
    Lu, F., Lu, M., Lu, Z., Xiaomei, B., Haizhen, Z., & Yi, W. (2008). Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresource Technology, 99, 5938–5941.
    Nunez, L. Z., Rodriguez, R., & Baez, M. A. (2001). Gas retention mechanism in wheat bread doughts. The role of xylanase and arabinoxylan fractions. Journal of Biochemistry, 56, 31–33.
    Maheswari, M. U., & Chandra, T. S. (2000). Production and potential application of a xylanase from a new strain of Streptomyces cuspidosporus. World Journal of Microbiology and Biotechnology, 16, 257–263.
    Tan, S. S., Li, D. Y., Jiang, Z. Q., Zhu, Y. P., Shi, B., & Li, L. T. (2008). Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (xyn B) immobilized on nickel-chelated Eupergit C. Bioresource Technology, 99(1), 200–204.
    Bajpai, P. (1999). Application of enzymes in pulp and paper industry. Biotechnology Progress, 15, 147–157.
    Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Review, 29(1), 3–23.
    Wakiyama, M., Yoshihara, K., Hayashi, S., & Ohta, K. (2010). An extracellular endo-1,4-β-xylanase from Aspergillus japonicus: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering, 109(3), 227–229.
    Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., & Polizeli, M. L. T. M. (2001). Purification and properties of a thermostable extracellular β-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology, 26, 156–160.
    Wiseman, A. (1975). Handbook of enzyme biotechnology (p. 148). London: Ellis Horwood.
    Miller, G. H. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–429.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 267–275.
    Reisfeld, R. A., Lewis, U. J., & Williams, D. E. (1962). Disk electrophoresis of basic proteins and peptides on polycrylamide gels. Nature, 195, 281–283.
    Davis, B. J. (1964). Disc eletroforesis II. Methods and application to human serum proteins. Annals of the New York Academy of Sciences, 121, 404–427.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227, 680–685.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.
    Lineweaver, H., & Burk, D. (1934). The determination of the enzyme dissociation. Journal of the American Chemical Society, 56, 658–666.
    Fontana, J. D., Gebara, M., Blumel, M., Schneider, H., Mackenzie, C. R., & Johnson, K. G. (1988). α-4-O-methyl-D-glucuronidase component of xylanolytic complexes. Methods in Enzymology, 160, 560–571.
    Michelin, M., Peixoto-Nogueira, S. C., Silva, T. M., Jorge, J. A., Terenzi, H. F., Teixeira, J. A., & Polizeli, M. L. T. M. (2012). A novel xylan degrading β-D-xylosidase: purification and biochemical characterization. World Journal of Microbiology and Biotechnology, 28(11), 3179–3186.
    Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17(1), 39–67.
    Biely, P., Vrsanská, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-β-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 57, 151–166.
    Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochemistry, 40, 1823–1828.
    Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Applied Biochemistry and Biotechnology, 149, 229–243.
    Fang, H.-Y., Chang, S.-M., Lan, C.-H., & Fang, T. J. (2008). Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochemistry, 43, 49–55.
    Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D., Brocheto-Braga, M. R., & Jorge, J. A. (2005). Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochemistry, 40, 359–364.
    Pal, A., & Khanum, F. (2011). Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochemistry, 46, 879–887.
    Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Review, 23(4), 411–456.
    Wong, K. K. Y., Tan, L. U., & Saddler, J. N. (1988). Multiplicity of β-1,4 xylanase in microorganisms functions and applications. Microbiological Reviews, 52, 305–317.
    Merivuori, H., Sands, J. A., & Montenecourt, B. S. (1985). Effects of tunicamycin on secretion and enzymatic activities of cellulase from Trichoderma reesei. Applied Microbiology and Biotechnology, 23, 60–66.
    Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461–488.
    Gomes, E., Guez, M. A. U., Martin, N., & Silva, R. (2007). Enzimas termoestáveis: fontes, produção e aplicação industrial. Quimica Nova, 30(1), 136–145.
    Fonseca-Maldonado, R., Vieira, D. S., Alponti, J. S., Bonneil, E., Thibault, P., & Ward, R. J. (2013). Engineering the pattern of protein glycosylation modulates the themostability of a GH11 xylanase. Journal of Biological Chemistry, 288, 25522–25534.
    Bastawde, K. B. (1992). Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology, 8(4), 353–368.
    Hmida-Sayari, A., Taktek, S., Elgharbi, F., & Bejar, S. (2012). Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain. Process Biochemistry, 47, 1839–1847.
    Bataillon, M., Nunes Cardinali, A. P., Castillon, N., & Duchiron, F. (2000). Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme and Microbial Technology, 26, 187–192.
    Heck, J. X., Soares, L. H. B., Hertz, P. F., & Ayub, M. A. Z. (2006). Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochemical Engineering Journal, 32, 179–184.
    Raj, K. C., & Chandra, T. S. (1996). Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiology Letters, 145, 457–461.
    Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39, 1492–1498.
    Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.
    Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J. S., & Eriksson, K.-E. L. (2000). Relationships between activities of xylanases and xylan structures. Enzyme and Microbial Technology, 27, 89–94.
    Vásquez, M. J., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2002). Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of eucalyptus wood. Food Biotechnology, 16, 91–105.