Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Relevance of the myeloid differentiation factor 88 (MyD88) on RANKL, OPG, and nod expressions induced by TLR and IL-1R signaling in bone marrow stromal cells (2015)

  • Authors:
  • USP affiliated authors: ZAMBONI, DARIO SIMÕES - FMRP ; SILVA, JOÃO SANTANA DA - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s10753-014-0001-4
  • Subjects: LIPOPOLISSACARÍDEOS; PROTEÍNAS QUINASES
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Inflammation
    • ISSN: 0360-3997
    • Volume/Número/Paginação/Ano: v. 38, n. 1, p. 1-8, 2015
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10753-014-0001-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10753-014-0001-4 (Fonte: Unpaywall API)

    Título do periódico: Inflammation

    ISSN: 0360-3997,1573-2576



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Inflammation

    ISSN: 0360-3997

    Citescore - 2017: 2.92

    SJR - 2017: 1.023

    SNIP - 2017: 0.946


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2650944pcd 2650944 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LEITE, Fábio Renato Manzolli; AQUINO, Sabrina Garcia de; GUIMARÃES, Morgana Rodrigues; et al. Relevance of the myeloid differentiation factor 88 (MyD88) on RANKL, OPG, and nod expressions induced by TLR and IL-1R signaling in bone marrow stromal cells. Inflammation, New York, v. 38, n. 1, p. 1-8, 2015. Disponível em: < http://dx.doi.org/10.1007/s10753-014-0001-4 > DOI: 10.1007/s10753-014-0001-4.
    • APA

      Leite, F. R. M., Aquino, S. G. de, Guimarães, M. R., Cirelli, J. A., Zamboni, D. S., Silva, J. S. da, & Rossa Junior, C. (2015). Relevance of the myeloid differentiation factor 88 (MyD88) on RANKL, OPG, and nod expressions induced by TLR and IL-1R signaling in bone marrow stromal cells. Inflammation, 38( 1), 1-8. doi:10.1007/s10753-014-0001-4
    • NLM

      Leite FRM, Aquino SG de, Guimarães MR, Cirelli JA, Zamboni DS, Silva JS da, Rossa Junior C. Relevance of the myeloid differentiation factor 88 (MyD88) on RANKL, OPG, and nod expressions induced by TLR and IL-1R signaling in bone marrow stromal cells [Internet]. Inflammation. 2015 ; 38( 1): 1-8.Available from: http://dx.doi.org/10.1007/s10753-014-0001-4
    • Vancouver

      Leite FRM, Aquino SG de, Guimarães MR, Cirelli JA, Zamboni DS, Silva JS da, Rossa Junior C. Relevance of the myeloid differentiation factor 88 (MyD88) on RANKL, OPG, and nod expressions induced by TLR and IL-1R signaling in bone marrow stromal cells [Internet]. Inflammation. 2015 ; 38( 1): 1-8.Available from: http://dx.doi.org/10.1007/s10753-014-0001-4

    Referências citadas na obra
    Doyle, S.L., and L.A. O’Neill. 2006. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochemical Pharmacology 72(9): 1102–1113.
    Janssens, S., and R. Beyaert. 2002. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends in Biochemical Sciences 27(9): 474–482.
    Sato, N., N. Takahashi, K. Suda, M. Nakamura, M. Yamaki, T. Ninomiya, et al. 2004. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. Journal of Experimental Medicine 200(5): 601–611.
    Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, et al. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Molecular Cell 2(2): 253–258.
    Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J.L. Bodmer, et al. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. Journal of Biological Chemistry 273(20): 12203–12209.
    Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, et al. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9(1): 143–150.
    Schnare, M., A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2000. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology 10(18): 1139–1142.
    Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857): 732–738.
    Deng, L., C. Wang, E. Spencer, L. Yang, A. Braun, J. You, et al. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2): 351–361.
    Wang, C., L. Deng, M. Hong, G.R. Akkaraju, J. Inoue, and Z.J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844): 346–351.
    Garcia de Aquino S, Manzolli Leite FR, Stach-Machado DR, Francisco da Silva JA, Spolidorio LC, Rossa C, Jr. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Science. 84(21-22):745–54. doi: 10.1016/j.lfs.2009.03.001 .
    Takaesu, G., S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya, K. Irie, et al. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Molecular Cell 5(4): 649–658.
    Kopp, E., R. Medzhitov, J. Carothers, C. Xiao, I. Douglas, C.A. Janeway, et al. 1999. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes and Development 13(16): 2059–2071.
    Sanz, L., M.T. Diaz-Meco, H. Nakano, and J. Moscat. 2000. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO Journal 19(7): 1576–1586.
    Yoshida, H., S. Hayashi, T. Kunisada, M. Ogawa, S. Nishikawa, H. Okamura, et al. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274): 442–444.
    Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423(6937): 337–342.
    Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11(1): 115–122.
    Kim, Y.G., J.H. Park, S. Daignault, K. Fukase, and G. Nunez. 2008. Cross-tolerization between Nod1 and Nod2 signaling results in reduced refractoriness to bacterial infection in Nod2-deficient macrophages. Journal of Immunology 181(6): 4340–4346.
    Hugot, J.P., M. Chamaillard, H. Zouali, S. Lesage, J.P. Cezard, J. Belaiche, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837): 599–603.
    Yang, S., N. Takahashi, T. Yamashita, N. Sato, M. Takahashi, M. Mogi, et al. 2005. Muramyl dipeptide enhances osteoclast formation induced by lipopolysaccharide, IL-1 alpha, and TNF-alpha through nucleotide-binding oligomerization domain 2-mediated signaling in osteoblasts. Journal of Immunology 175(3): 1956–1964.
    Rossa Jr., C., M. Liu, and K.L. Kirkwood. 2008. A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-kappaB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide. Journal of Periodontal Research 43(2): 201–211.
    Yamashita, T., N. Takahashi, S. Yang, N. Sato, and N. Udagawa. 2006. Bone destruction caused by osteoclasts. Clinical Calcium 16(2): 234–240.
    Soory, M. 2007. Periodontal diseases and rheumatoid arthritis: a coincident model for therapeutic intervention? Current Drug Metabolism 8(8): 750–757.
    Falgarone, G., O. Jaen, and M.C. Boissier. 2005. Role for innate immunity in rheumatoid arthritis. Joint, Bone, Spine 72(1): 17–25.
    Basak, G.W., A.S. Srivastava, R. Malhotra, and E. Carrier. 2009. Multiple myeloma bone marrow niche. Current Pharmaceutical Biotechnology 10(3): 345–346.
    Ogura, Y., D.K. Bonen, N. Inohara, D.L. Nicolae, F.F. Chen, R. Ramos, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837): 603–606.
    Inohara, N., Y. Ogura, F.F. Chen, A. Muto, and G. Nunez. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. Journal of Biological Chemistry 276(4): 2551–2554.
    Stroh, T., A. Batra, R. Glauben, I. Fedke, U. Erben, A. Kroesen, et al. 2008. Nucleotide oligomerization domains 1 and 2: regulation of expression and function in preadipocytes. Journal of Immunology 181(5): 3620–3627.
    O’Neill, L.A. 2006. Targeting signal transduction as a strategy to treat inflammatory diseases. Nature Reviews Drug Discovery 5(7): 549–563.
    Zeuthen, L.H., L.N. Fink, and H. Frokiaer. 2008. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124(4): 489–502.
    Rossa, C., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. Journal of Interferon and Cytokine Research 26(10): 719–729.
    Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, T.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78(10): 1992–1998.