Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal (2014)

  • Authors:
  • USP affiliated authors: VIEIRA, BIANCA CARVALHO - FFLCH
  • USP Schools: FFLCH
  • DOI: 10.1007/s10346-014-0494-9
  • Subjects: DESLIZAMENTO DE TERRA
  • Language: Inglês
  • Abstract: The Northwest of Portugal is a steep slope mountain area where high amounts of rainfall (3,000 mm/year) occur especially on winter, promoting high natural propensity to slope failure, mainly shallow landslides. This article aims to assess shallow landslide susceptibility, in Tibo catchment, Serra da Peneda, North of Portugal, using two physically based models—SHAllow Landslide STABility (SHALSTAB) and Safety Factor (SF)—applying a set of mechanical and hydrological parameters, assessed in situ and laboratory testing of soil samples collected in the field, calibrated by back analysis of landslides inventoried in the study area, as well as accurate topographic information derived from a high-resolution digital elevation model (DEM). The validation of results was made using shallow landslide scars, directly inventoried in the field. Both susceptibility model results were validated by scar concentration (SC) and landslide potential (LP). SHALSTAB model was also validated by minimum log q/T. SHALSTAB predicts 50 % of the area to be on unstable classes (log q/T < −2.5), 77 % of the SC on unstable classes and a LP index of 7 and 4.7 % for the two most unstable classes. By minimum log q/T, SHALSTAB predicts 91 % of the scars to occur on unstable classes. Safety factor predicts 47.99 % of the area as unstable, 79.9 % of the SC for unstable classes, and a LP index on unstable classes of 4.63 and 2.77 % on partially unstable class. For the most unstable classes of both models, the greatest values of LP were between 3.5 and 7 %. The simple physically based models used in this study (SHALSTAB and SF) proved to be effective as shallow landslide susceptibility predictors, being in consequence useful tools for municipal planning on landslide hazards, but their application requires, beyond detailed topographical information, good estimates of the mechanical and hydrological soil properties
  • Imprenta:
    • Publisher place: Cham
    • Date published: 2014
  • Source:
    • Título do periódico: Landslides
    • ISSN: 1612-5118
    • Volume/Número/Paginação/Ano: [14 p.], maio 2014
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10346-014-0494-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10346-014-0494-9 (Fonte: Unpaywall API)

    Título do periódico: Landslides

    ISSN: 1612-510X,1612-5118



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Landslides

    ISSN: 1612-510X

    Citescore - 2017: 4.03

    SJR - 2017: 1.802

    SNIP - 2017: 2.135


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FFLCH2652118-10Disponível apenas online - USP
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      TEIXEIRA, Manuel; BATEIRA, Carlos; MARQUES, Fernando; VIEIRA, Bianca Carvalho. Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, Cham, p. [14 ], 2014. Disponível em: < http://dx.doi.org/10.1007/s10346-014-0494-9 > DOI: 10.1007/s10346-014-0494-9.
    • APA

      Teixeira, M., Bateira, C., Marques, F., & Vieira, B. C. (2014). Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, [14 ]. doi:10.1007/s10346-014-0494-9
    • NLM

      Teixeira M, Bateira C, Marques F, Vieira BC. Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal [Internet]. Landslides. 2014 ;[14 ].Available from: http://dx.doi.org/10.1007/s10346-014-0494-9
    • Vancouver

      Teixeira M, Bateira C, Marques F, Vieira BC. Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal [Internet]. Landslides. 2014 ;[14 ].Available from: http://dx.doi.org/10.1007/s10346-014-0494-9

    Referências citadas na obra
    Aleotti P, Chowdhury R (1999) Landslides hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44
    Alexander D (1992) On the causes of landslides: human activities, perception and natural processes. Environ Geol Water Sci 20(3):165–179
    Ayala IA (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40
    Bateira C (2001) Movimentos de Vertente no NW de Portugal, Susceptibilidade Geomorfológica e Sistemas de Informação Geográfica. Tese de Doutoramento. Faculdade de Letras da Universidade do Porto
    Bateira C (2010) Avaliação da susceptibilidade natural na região norte de Portugal. Análise prospectiva e ordenamento do território. Prospectiva e Planeamento 17:15–32
    Baum RL, Savage W, Godt J (2002) TRIGRS—transient rainfall infiltration grid-based regional slope stability analysis. vol File Report 02–0424, U.S. Geological Survey
    Baum RL, Savage W, Godt J (2008) TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0, U.S. Geological Survey
    Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69
    Calcaterra D, de Riso R, Di Martire D (2004) Assessing shallow debris slide hazard in the Agnano Plain (Naples, Italy) using SINMAP, a physically based slope stability model. In: Symposium on landslides, Rio de Janeiro. Taylor & Francis Group, pp 177–183
    Carrara AL (1993) Uncertainty in evaluating landslide hazard and risk. Predictions and perception of natural hazards. Kluwer, Dordrecht
    Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445
    Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. doi: 10.1007/s10346-010-0207-y
    Crozier MJ, Glade T (2004) Landslide hazard and risk: issues, concepts and approach. In: Glade TA M, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, p 802
    Daveau S (1977) Répartition et rythme des précipitations au Portugal. Memórias do CEG
    Dietrich W, Montgomery D (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential. National Council of the Paper Industry for Air and Stream Improvement (NCASI) Technical Report: 26 p
    Dietrich W, Asua R, Orr J, Trso M (1998) A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Watershed and Riverine Sciences Stillwater Ecosystem, Berkeley, 59 p
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874
    Fernandes N, Guimarães RF, Gomes R, Vieira B, Montgomery D, Greenberg H (2001) Condicionantes geomorfológicos dos deslizamentos nas encostas: teoria, evidências de campo e aplicação de modelo de previsão de áreas susceptíveis. Rev Bras Geomorfologia 2(1):51–71
    Fernandes N, Guimarães RF, Gomes R, Vieira B, Montgomery D, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena 55:163–181
    Geotechdata (2011) Angle of friction. http://geotechdata.info/parameter/angle-of-friction . Accessed 24 May 2012
    Gomes R (2006) Modelagem de previsão de movimentos de massa a partir da combinação de modelos de escorregamentos e corridas de massa. Tese de Doutoramento. Universidade Federal do Rio de Janeiro
    Guimarães RF, Montgomery D, Greenberg H, Fernandes N, Gomes R, Carvalho Júnior OA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108
    Guzzetti F (2005) Landslide hazard and risk assessment. PhD thesis. Universidade de Bona
    Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216
    Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910
    Listo F, Vieira B (2012) Mapping of risk and susceptibility of shallow-landslide in the City of São Paulo, Brazil. Geomorphology 169–170:30–44. doi: 10.1016/j.geomorph.2012.01.010
    Marques F (1997) As Arribas do Litoral do Algarve. Dinâmica, Processos e Mecanismos. Tese de Doutoramento. Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa
    Montgomery DR, Dietrich W (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171
    Montgomery DR, Sullivan K, Greenberg H (1998) Regional test of a model for shallow landsliding. Hydrol Process 12:943–955
    Moreira A, Simões M (1988) Noticia Explicativa da folha 1-D Arcos de Valdevez. Direcção GeraI de Geologia e Minas. Serviços Geológicos de Portugal, Lisboa
    O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22(5):794–804
    Pack R, Tarbotan D, Goodwin C (1998) SINMAP—a stability index approach to terrain stability hazard mapping. User’s manual. http://hydrology.neng.usu.edu/sinmap/ . 68 p
    Pack R, Tarbotan D, Goodwin C (2005) SINMAP 2—a stability index approach to terrain stability hazard mapping. http://hydrology.neng.usu.edu/sinmap/ . User’s manual. Terratech Consulting Ltd. (Salmon Arm, B.C., Canada):73 p
    Pereira S (2009) Perigosidade a Movimentos de Vertente na Região Norte de Portugal. Tese de Doutoramento. Universidade do Porto
    Pereira S, Zêzere J, Bateira C (2012) Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12:979–988. doi: 10.5194/nhess-12-979-2012
    Raia S, Alvioli M, Rossi M, Baum RL, Godt J, Guzzetti F (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev. doi: 10.5194/gmd-7-495-2014 , 25 pp
    Ramos VM, Guimarães RF, Redivo AL, Gomes RAT, Fernandes NF, Carvalho Filho OA (2002) Aplicação do Modelo Shalstab, em Ambiente Arcview, para o Mapeamento de Áreas Susceptíveis a Escorregamento Raso na Região do Quadrilátero Ferrífero (Mg). Revista Espaço Geografia 5(1):49–67
    Reneau SL, Dietrich WE (1987) Size and location of colluvial landslides in a steep forested landscape. Erosion and sedimentation in the Pacific Rim. IAHS 165:39–47
    Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Regional of Central Italy. Landslides 3:181–194
    Santini M, Grimaldi S, Nardi F, Petroselli A, Rulli MC (2009) Pre-processing algorithms and landslide modelling on remotely sensed DEM’s. Geomorphology 113:110–125. doi: 10.1016/j.geomorph.2009.03.023
    Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent areal slope stability. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayão ASF (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, Rio de Janeiro
    SGP (1988) Carta Geológica de Arcos de Valdevez, na escala 1/50 000. Lisboa
    Sharma S (2002) Slope stability concepts. In: Abramson LW, Lee TS, Sharma S, Boyce GM (eds) Slope stability and stabilization methods. Wiley, New York, pp 329–461
    Soeters R, Westen V (1996) Slope instability recognition, analysis and zonation. In: Turner K, Schuster R (eds) Landslides investigation and mitigation. National Academy Press, Washington
    Süzen ML, Doyuran V (2004) A comparison of GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679
    Teixeira M (2006) Movimentos de Vertente: Factores de Ocorrência e Metodologia de Inventariação. Geonovas (20):12 p
    Vieira B, Fernandes N, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat Hazards Earth Syst Sci 10:1829–1837. doi: 10.5194/nhess−10-1829-2010
    Wu W, Sidle R (1997) Application of a distributed Shallow Landslide Analysis Model (dSLAM) to managed forested catchments in Oregon, USA. In: Proceedings of Rabat Symposium S6, April. Human Impact on Erosion and Sedimentation, Rabat. IAHS Publ., pp 213–221
    Yin K, Yan T (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proc. Fifth International Symposium in Landslides, Lausanne, vol 2. Balkema, Rotterdam, pp 1269–1272
    Zêzere J (1997) Movimentos de Vertente e Perigosidade Geomorfológica na Região a Norte de Lisboa. Tese de Doutoramento. Universidade de Lisboa