Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Class imbalance revisited: a new experimental setup to assess the performance of treatment methods (2015)

  • Authors:
  • USP affiliated authors: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10115-014-0794-3
  • Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; MINERAÇÃO DE DADOS; RECONHECIMENTO DE PADRÕES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10115-014-0794-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10115-014-0794-3 (Fonte: Unpaywall API)

    Título do periódico: Knowledge and Information Systems

    ISSN: 0219-1377,0219-3116



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Knowledge and Information Systems

    ISSN: 0219-1377

    Citescore - 2017: 2.6

    SJR - 2017: 0.672

    SNIP - 2017: 1.496


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2653046-10PROD-2653046
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PRATI, Ronaldo C; BATISTA, Gustavo Enrique de Almeida Prado Alves; SILVA, Diego F. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, London, Springer, v. 45, n. 1, p. 247-270, 2015. Disponível em: < http://dx.doi.org/10.1007/s10115-014-0794-3 > DOI: 10.1007/s10115-014-0794-3.
    • APA

      Prati, R. C., Batista, G. E. de A. P. A., & Silva, D. F. (2015). Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, 45( 1), 247-270. doi:10.1007/s10115-014-0794-3
    • NLM

      Prati RC, Batista GE de APA, Silva DF. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods [Internet]. Knowledge and Information Systems. 2015 ; 45( 1): 247-270.Available from: http://dx.doi.org/10.1007/s10115-014-0794-3
    • Vancouver

      Prati RC, Batista GE de APA, Silva DF. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods [Internet]. Knowledge and Information Systems. 2015 ; 45( 1): 247-270.Available from: http://dx.doi.org/10.1007/s10115-014-0794-3

    Referências citadas na obra
    Batista GEAPA, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor 6(1):20–29
    Bennett BM (1965) Confidence limits for a ratio using Wilcoxon’s signed rank test. Biometics 21(1):231–234
    Berrar D, Lozano JA (2013) Significance tests or confidence intervals: which are preferable for the comparison of classifiers?. J Exp Theor Artif Intell 25(2):189–206. http://www.ingentaconnect.com/content/tandf/teta/2013/00000025/00000002/art00003
    Borgelt C (2012) Christian borgelt web page. http://www.borgelt.net/
    Chang C-C, Lin C-J (2012) Libsvm—a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm/
    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357
    Cieslak D, Chawla N (2008) Analyzing pets on imbalanced datasets when training and testing class distributions differ. In: Pacific-Asia conference on advances in knowledge discovery and data mining, pp 519–526
    Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: European working session on machine learning, pp 151–163
    Cohen G, Hilario M, Sax H, Hugonnet S, Geissbhler A (2006) Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 37(1):7–18
    Cohen WW (1995) Fast effective rule induction. In: International conference on machine learning. Morgan Kaufmann, Los Altos, CA, pp 115–123
    Domingos P (1999) Metacost: a general method for making classifiers cost-sensitive. In: Fayyad UM, Chaudhuri S, Madigan D (eds) ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 155–164
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
    Foody GM (2009) Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ 113(8):1658–1663. http://www.sciencedirect.com/science/article/pii/S0034425709000923
    Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
    Froemke C, Hothorn L, Schneider M (2012) Confidence intervals for the ratio of locations and for the ratio of scales of two paired samples. Technical report, The Comprehensive R Archive Network. http://cran.r-project.org/web/packages/pairedCI/index.html
    Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C 42(4):463–484
    Guo H, Viktor HL (2004) Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explor 6(1):30–39
    Han H, Wang W-Y, Mao B-H (2005) Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on advances in intelligent computing. Lecture notes in computer science. Springer, Berlin, pp 878–887. doi: 10.1007/11538059_91
    He H, Bai Y, Garcia E, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks, pp 1322–1328
    He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
    Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449
    Khoshgoftaar TM, Seiffert C, Hulse JV, Napolitano A, Folleco A (2007) Learning with limited minority class data. In: International conference on machine learning and applications, pp 348–353
    Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite radar images. Mach Learn 30(2–3):195–215
    Liu X-Y, Wu J, Zhou Z-H (2006) Exploratory under-sampling for class-imbalance learning. In: IEEE international conference on data mining, pp 965–969
    Liu X-Y, Zhou Z-H (2006) The influence of class imbalance on cost-sensitive learning: an empirical study. In: ‘ICDM’, IEEE Computer Society, pp 970–974
    Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis Horwood, New york
    Phua C, Alahakoon D, Lee V (2004) Minority report in fraud detection: classification of skewed data. SIGKDD Explor 6(1):50–59
    Prati RC, Batista GEAPA, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23(11):1601–1618
    Prati RC, Batista GEAPA, Silva DF (2013) Paper website. http://sites.labic.icmc.usp.br/ClassImbalanceRevisited/
    Provost FJ, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction algorithms. In: Shavlik JW (ed) International conference on machine learning. Morgan Kaufmann, Los Altos, CA, pp 445–453
    Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc, Los Altos, CA
    Wallace B, Small K, Brodley C, Trikalinos T (2011) Class imbalance, redux. In: IEEE international conference on data mining, pp 754–763
    Wang X, Matwin S, Japkowicz N, Liu X (2013) Cost-sensitive boosting algorithms for imbalanced multi-instance datasets. In: Zaïane OR, Zilles S (eds) Canadian conference on artificial intelligence, vol 7884 of lecture notes in computer science. Springer, Berlin, pp 174–186
    Weiss GM (2004) Mining with rarity: a unifying framework. SIGKDD Explor 6(1):7–19
    Weiss GM, McCarthy K, Zabar B (2007) Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs? In: IEEE international conference on data mining, pp 35–41
    Weiss GM, Provost F (2003) Learning when training data are costly: the effect of class distribution on tree induction. J Artif Intell Res 19:315–354
    Wu G, Chang EY (2003) Class-boundary alignment for imbalanced dataset learning. In: Workshop on learning from imbalanced Datasets in international conference on machine learning