Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The Poisson-Inverse-Gaussian regression model with cure rate: a bayesian approach and its case influence diagnostics (2016)

  • Authors:
  • USP affiliated authors: SUZUKI, ADRIANO KAMIMURA - ICMC ; CANCHO, VICENTE GARIBAY - ICMC ; LOUZADA NETO, FRANCISCO - ICMC
  • USP Schools: ICMC; ICMC; ICMC
  • DOI: 10.1007/s00362-014-0649-8
  • Subjects: ESTATÍSTICA; ESTATÍSTICA APLICADA; INFERÊNCIA BAYESIANA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00362-014-0649-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00362-014-0649-8 (Fonte: Unpaywall API)

    Título do periódico: Statistical Papers

    ISSN: 0932-5026,1613-9798



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Statistical Papers

    ISSN: 0932-5026

    Citescore - 2017: 0.94

    SJR - 2017: 1.004

    SNIP - 2017: 1.515


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2661160-10PROD 2661160
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SUZUKI, Adriano Kamimura; CANCHO, Vicente Garibay; LOUZADA, Francisco. The Poisson-Inverse-Gaussian regression model with cure rate: a bayesian approach and its case influence diagnostics. Statistical Papers, Heidelberg, Springer, v. 57, n. 1, p. 133-159, 2016. Disponível em: < http://dx.doi.org/10.1007/s00362-014-0649-8 > DOI: 10.1007/s00362-014-0649-8.
    • APA

      Suzuki, A. K., Cancho, V. G., & Louzada, F. (2016). The Poisson-Inverse-Gaussian regression model with cure rate: a bayesian approach and its case influence diagnostics. Statistical Papers, 57( 1), 133-159. doi:10.1007/s00362-014-0649-8
    • NLM

      Suzuki AK, Cancho VG, Louzada F. The Poisson-Inverse-Gaussian regression model with cure rate: a bayesian approach and its case influence diagnostics [Internet]. Statistical Papers. 2016 ; 57( 1): 133-159.Available from: http://dx.doi.org/10.1007/s00362-014-0649-8
    • Vancouver

      Suzuki AK, Cancho VG, Louzada F. The Poisson-Inverse-Gaussian regression model with cure rate: a bayesian approach and its case influence diagnostics [Internet]. Statistical Papers. 2016 ; 57( 1): 133-159.Available from: http://dx.doi.org/10.1007/s00362-014-0649-8

    Referências citadas na obra
    Bacanli S, Demirhan YP (2008) A group sequential test for the inverse gaussian mean. Stat Pap 49(2):377–386
    Balka J, Desmond A, McNicolas P (2009) Review and implementation of cure models based on first hitting times for wiener processes. Lifetime Data Anal 15:147–176
    Balka J, Desmond AF, McNicholas PD (2011) Bayesian and likelihood inference for cure rates based on defective inverse gaussian regression models. J Appl Stat 38(1):127–144
    Brooks SP (2002) Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde. J R Stat Soc B 64:616–618
    Cancho V, Ortega E, Bolfarine H (2009) The log-exponentiated-weibull regression models with cure rate: local influence and residual analysis. J Data Sci 7:433–458
    Cancho V, Ortega E, Paula G (2010) On estimation and influence diagnostics for log-birnbaum-saunders student-t regression models: Full bayesian analysis. J Stat Plann Inference 140(9):2486–2496
    Cancho V, Dey D, Lachos V, Andrade M (2011a) Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: estimation and case influence diagnostics. Comput Stat Data Anal 55(1):588–602
    Cancho V, Rodrigues J, de Castro M (2011b) A flexible model for survival data with a cure rate: a bayesian approach. J Appl Stat 38(1):57–70
    Cancho VG, de Castro M, Rodrigues J (2012) A bayesian analysis of the conway-maxwell-poisson cure rate model. Stat Pap 53(1):165–176
    Carlin BP, Louis TA (2001) Bayes and empirical bayes methods for data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton
    Chhikara R, Folks L (1989) The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker, New York
    Cobre J, Perdona GSC, Peria FM, Louzada F (2013) A mechanistic breast cancer survival modelling through the axillary lymph node chain. Stat Med 32(9):1536–1546
    Cook RD (1986) Assessment of local influence. J Roy Stat Soc B 48:133–169
    Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman & Hall/CRC, Boca Raton
    Cooner F, Banerjee S, McBean AM (2006) Modelling geographically referenced survival data with a cure fraction. Stat Methods Med Res 15:307–324
    Cooner F, Banerjee S, Carlin BP, Sinha D (2007) Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 102:560–572
    Cordeiro GM, Rodrigues J, de Castro M (2012) The exponential com-poisson distribution. Stat Pap 53(3):653–664
    Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904
    Dey D, Birmiwal L (1994) Robust bayesian analysis using divergence measures. Stat Probab Lett 20(4):287–294
    Folks JL (2007) Inverse Gaussian distribution. The encyclopedia of statistical sciences, 6th edn. Wiley, New York
    Folks JL, Chhikara RS (1978) The inverse gaussian distribution and its statistical application - a review. J R Stat Soc Ser B 40(3):263–289
    Gamerman D, Lopes HF (2006) Markov Chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca Raton
    Geisser S, Eddy W (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160
    Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive distributions with implementation via sampling based methods (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics. Oxford University Press, Oxford, pp 7–167
    Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, 4th edn. Oxford University Press, Oxford, pp 169–188
    Gu Y, Sinha D, Banerjee S (2011) Analysis of cure rate survival data under proportional odds model. Lifetime Data Anal 17(1):123–134
    Hanagal DD, Dabade AD (2013) Modeling of inverse gaussian frailty model for bivariate survival data. Commun Stat Theory Methods 42(20):3744–3769
    Ibrahim JG, Chen M-H, Sinha D (2001) Bayesian survival analysis. Springer, New York
    Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, 2nd edn. Wiley, New York
    Kim S, Chen M, Dey D (2011) A new threshold regression model for survival data with a cure fraction. Lifetime Data Anal 17(1):101–122
    Kirkwood JM, Ibrahim JG, Sondak VK, Richards J, Flaherty LE, Ernstoff MS, Smith TJ, Rao U, Steele M, Blum RH (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol 18:2444–2458
    Kotz S, Leiva V, Sanhueza A (2010) Two new mixture models related to the inverse gaussian distribution. Methodol Comput Appl Probab 12:199–212
    Leiva V, Sanhueza A, Kotz S, Araneda N (2010) A unified mixture model based on the inverse gaussian distribution. Pak J Stat 26:445–460
    Louzada-Neto F (1999) Poly-hazard regression models for lifetime data. Biometrics 55:1121–1125
    Mazucheli J, Louzada F, Achcar JA (2012) The polysurvival model with long-term survivors. Revista Brasileira de Probabilidade e Estatıstica 26:313–324
    Peng F, Dey D (1995) Bayesian analysis of outlier problems using divergence measures. Can J Stat 23(2):199–213
    Rodrigues J, Cancho V, de Castro M, Louzada-Neto F (2009) On the unification of long-term survival models. Stat Probab Lett 79:753–759
    Sanhueza A, Leiva V, Balakrishnan N (2008) A new class of inverse gaussian type distributions. Metrika 68:31–68
    Schrödinger E (1915) Zur theorie der fall-und steigversuche und teilchen mit brownscher bewegung. Phys Z 16(16):289–295
    Seshadri V (1993) The inverse Gaussian distribution: a case study in exponential families. Claredon, New York
    Seshadri V (1999) The inverse Gaussian distribution: statistical theory and applications. Springer, New York
    Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64:583–639
    Stogiannis D, Caroni C (2012) Tests for outliers in the inverse gaussian distribution, with application to first hitting time models. J Stat Comput Simul 82(1):73–80
    Tojeiro CVM, Louzada F (2012) A general threshold stress hybrid hazard model for lifetime data. Stat Pap 53(4):833–848
    Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1078
    Tweedie MCK (1957) Statistical properties of the inverse gaussian distribution. Ann Math Stat 28:362–377
    Weiss R. (1996). An approach to Bayesian sensitivity analysis. J R Stat Soc Ser B, pp 739–750.
    Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, Singapore