Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Lazy multi-label learning algorithms based on mutuality strategies (2015)

  • Authors:
  • USP affiliated authors: MONARD, MARIA CAROLINA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10846-014-0144-4
  • Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10846-014-0144-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10846-014-0144-4 (Fonte: Unpaywall API)

    Título do periódico: Journal of Intelligent & Robotic Systems

    ISSN: 0921-0296,1573-0409

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: submittedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of Intelligent and Robotic Systems: Theory and Applications

    ISSN: 0921-0296

    Citescore - 2017: 2.36

    SJR - 2017: 0.537

    SNIP - 2017: 1.534


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2663482-10PROD-2663482
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CHERMAN, Everton Alvares; SPOLAÔR, Newton; VALVERDE-REBAZA, Jorge; MONARD, Maria Carolina. Lazy multi-label learning algorithms based on mutuality strategies. Journal of Intelligent and Robotic Systems, Dordrecht, Springer, v. 80, p. S261-S276, 2015. Disponível em: < http://dx.doi.org/10.1007/s10846-014-0144-4 > DOI: 10.1007/s10846-014-0144-4.
    • APA

      Cherman, E. A., Spolaôr, N., Valverde-Rebaza, J., & Monard, M. C. (2015). Lazy multi-label learning algorithms based on mutuality strategies. Journal of Intelligent and Robotic Systems, 80, S261-S276. doi:10.1007/s10846-014-0144-4
    • NLM

      Cherman EA, Spolaôr N, Valverde-Rebaza J, Monard MC. Lazy multi-label learning algorithms based on mutuality strategies [Internet]. Journal of Intelligent and Robotic Systems. 2015 ; 80 S261-S276.Available from: http://dx.doi.org/10.1007/s10846-014-0144-4
    • Vancouver

      Cherman EA, Spolaôr N, Valverde-Rebaza J, Monard MC. Lazy multi-label learning algorithms based on mutuality strategies [Internet]. Journal of Intelligent and Robotic Systems. 2015 ; 80 S261-S276.Available from: http://dx.doi.org/10.1007/s10846-014-0144-4

    Referências citadas na obra
    Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2-3), 211–225 (2009)
    Cherman, E.A., Spolaôr, N., Valverde-Rebaza, J., Monard, M.C.: Graph based algorithms for multi-label classification (in portuguesse). In: Encontro Nacional de Inteligṅcia Computacional, pp. 1–12. SBC (2013)
    Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53. Springer-Verlag (2001)
    Dembczynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88(1-2), 5–45 (2012)
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
    Liu, H., Zhang, S., Zhao, J., Zhao, X., Mo, Y.: A new classification algorithm using mutual nearest neighbors. In: 9th International Conference on Grid and Cooperative Computing (GCC), pp 52–57 (2010)
    Marques, G., Domingues, M.A., Langlois, T., Gouyon, F.: Three current issues in music autotagging. In: Klapuri, A., Leider, C. (eds.) ISMIR, pp 795–800. University of Miami (2011)
    Metz, J, de Abreu, L.F.D., Cherman, E.A., Monard, M.C.: On the estimation of predictive evaluation measure baselines for multi-label learning. In: IBERAMIA, pp 189–198 (2012)
    Pang-Ning, T., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining (2006)
    Rossi, R.G., Rezende, S.O.: Building a topic hierarchy using the bag-of-related-words representation. In: Symposium on Document Engineering, pp. 195–204. ACM (2011)
    Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel classification algorithms. In: Hellenic conference on Artificial Intelligence, pp 401–406. Springer-Verlag, Berlin, Heidelberg (2008)
    Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp 667–685, Springer (2010)
    Tsoumakas, G., Spyromitros, E., Vilcek, J., Vlahavas, I.: Mulan: A java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)
    Wilson, D.R., Martinez, T.R.: Reduction techniques for exemplar-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)
    Younes, Z., Abdallah, F., Denoeux, T., Snoussi, H.: A dependent multilabel classification method derived from the k-nearest neighbor rule. EURASIP J. Adv. Signal Process. 2011, 1–14 (2011)
    Zhang, M.L.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
    Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label classification. IEEE International Conference on Granular Computing 2, 718–721 (2005)
    Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 99, 1 (2013)