Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes (2015)

  • Authors:
  • USP affiliated authors: BUSATTO FILHO, GERALDO - FM ; GATTAZ, WAGNER FARID - FM ; BRUNONI, ANDRÉ RUSSOWSKY - RUSP
  • USP Schools: FM; FM; RUSP
  • DOI: 10.1007/s00213-014-3655-6
  • Subjects: DEPRESSÃO (TERAPIA); MITOCÔNDRIAS (ANORMALIDADES); TRANSTORNO BIPOLAR (TERAPIA); LÍTIO (APLICAÇÕES TERAPÊUTICAS)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00213-014-3655-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00213-014-3655-6 (Fonte: Unpaywall API)

    Título do periódico: Psychopharmacology

    ISSN: 0033-3158,1432-2072



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Psychopharmacology

    ISSN: 0033-3158

    Citescore - 2017: 3.05

    SJR - 2017: 1.494

    SNIP - 2017: 0.872


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2674310-10BCSEP 040 2015
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUSA, Rafael T. de; STRECK, Emilio L.; ZANETTI, Marcus V.; et al. Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology, Berlin, v. 232, n. 1, p. 245-250, 2015. Disponível em: < http://download.springer.com/static/pdf/823/art%253A10.1007%252Fs00213-014-3655-6.pdf?auth66=1424785803_ead16c2864f8593944997ca7b1849986&ext=.pdf > DOI: 10.1007/s00213-014-3655-6.
    • APA

      Sousa, R. T. de, Streck, E. L., Zanetti, M. V., Ferreira, G. K., Diniz, B. S., Brunoni, A. R., et al. (2015). Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology, 232( 1), 245-250. doi:10.1007/s00213-014-3655-6
    • NLM

      Sousa RT de, Streck EL, Zanetti MV, Ferreira GK, Diniz BS, Brunoni AR, Busatto GF, Gattaz WF, Machado-Vieira R. Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes [Internet]. Psychopharmacology. 2015 ; 232( 1): 245-250.Available from: http://download.springer.com/static/pdf/823/art%253A10.1007%252Fs00213-014-3655-6.pdf?auth66=1424785803_ead16c2864f8593944997ca7b1849986&ext=.pdf
    • Vancouver

      Sousa RT de, Streck EL, Zanetti MV, Ferreira GK, Diniz BS, Brunoni AR, Busatto GF, Gattaz WF, Machado-Vieira R. Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes [Internet]. Psychopharmacology. 2015 ; 232( 1): 245-250.Available from: http://download.springer.com/static/pdf/823/art%253A10.1007%252Fs00213-014-3655-6.pdf?auth66=1424785803_ead16c2864f8593944997ca7b1849986&ext=.pdf

    Referências citadas na obra
    Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149
    Amdisen A (1977) Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 2:73–92
    Andreazza AC, Kauer-Sant'anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144
    Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368
    Berk M, Berk L, Dodd S, Cotton S, Macneil C, Daglas R, Conus P, Bechdolf A, Moylan S, Malhi GS (2013) Stage managing bipolar disorder. Bipolar Disord
    Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316
    Chretien D, Rustin P, Bourgeron T, Rötig A, Saudubray JM, Munnich A (1994) Reference charts for respiratory chain activities in human tissues. Clin Chim Acta 228:53–70
    Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324
    Consortium WTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678
    de Sousa RT, Zarate CA, Zanetti MV, Costa AC, Talib LL, Gattaz WF, Machado-Vieira R (2013) Oxidative stress in early stage bipolar disorder and the association with response to lithium. J Psychiatr Res
    de Sousa RT, Uno M, Zanetti MV, Shinjo SM, Busatto GF, Gattaz WF, Marie SK, Machado-Vieira R (2014) Leukocyte mitochondrial DNA copy number in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 48:32–35
    Fassone E, Rahman S (2012) Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49:578–590
    First M, Spitzer RL, Gibbon M, Williams JBW (1995) Structured clinical interview for DSM-IV axis I disorders, Patientth edn. Biometrics Research Department, New York Psychiatric Institute, New York
    Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36
    Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K (2012) Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res 34:297–303
    Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47:1396–1402
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62
    Kato T, Takahashi S, Shioiri T, Inubushi T (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59
    Khairova R, Pawar R, Salvadore G, Juruena MF, de Sousa RT, Soeiro-de-Souza MG, Salvador M, Zarate CA, Gattaz WF, Machado-Vieira R (2012) Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep 5:680–682
    Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308
    Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V, da Silva VR, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36
    Machado-Vieira R, Manji HK, Zarate CA (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109
    Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, Teixeira AL, Zarate CA (2013) Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry
    Maurer IC, Schippel P, Volz HP (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11:515–522
    McQuillin A, Rizig M, Gurling HM (2007) A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics 17:605–617
    Noble PB, Cutts JH (1967) Separation of blood leukocytes by Ficoll gradient. Can Vet J 8:110–111
    Nolen WA, Weisler RH (2013) The association of the effect of lithium in the maintenance treatment of bipolar disorder with lithium plasma levels: a post hoc analysis of a double-blind study comparing switching to lithium or placebo in patients who responded to quetiapine (Trial 144). Bipolar Disord 15:100–109
    Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 1189:215–218
    Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51
    Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884
    Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Machado-Vieira R (2012) Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 126:332–341
    Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196
    Toker L, Bersudsky Y, Plaschkes I, Chalifa-Caspi V, Berry G, Buccafusca R, Moechars D, Belmaker RH, Agam G (2013) Inositol-related gene knockouts mimic lithium's effect on mitochondrial function. Neuropsychopharmacology
    Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44:903–909
    Washizuka S, Kakiuchi C, Mori K, Tajima O, Akiyama T, Kato T (2005) Expression of mitochondria-related genes in lymphoblastoid cells from patients with bipolar disorder. Bipolar Disord 7:146–152