Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Soil-borne microbiome: linking diversity to function (2015)

  • Authors:
  • USP affiliated authors: MUI, TSAI SIU - CENA
  • USP Schools: CENA
  • DOI: 10.1007/s00248-014-0559-2
  • Subjects: ECOLOGIA MICROBIANA; SOLOS; FLORESTAS TROPICAIS; USO DO SOLO
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Microbial Ecology
    • Volume/Número/Paginação/Ano: v. 70, n. 1, , p. 255-265, 2015
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00248-014-0559-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Microbial Ecology

    ISSN: 0095-3628

    Citescore - 2017: 3.54

    SJR - 2017: 1.272

    SNIP - 2017: 1.112


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MENDES, Lucas William; TSAI, Siu Mui; NAVARRETE, Acacio Aparecido; et al. Soil-borne microbiome: linking diversity to function. Microbial Ecology, New York, v. 70, n. 1, p. 255-265, 2015. DOI: 10.1007/s00248-014-0559-2.
    • APA

      Mendes, L. W., Tsai, S. M., Navarrete, A. A., Hollander, M. de, Veen, J. A. van, & Kuramae, E. E. (2015). Soil-borne microbiome: linking diversity to function. Microbial Ecology, 70( 1), 255-265. doi:10.1007/s00248-014-0559-2
    • NLM

      Mendes LW, Tsai SM, Navarrete AA, Hollander M de, Veen JA van, Kuramae EE. Soil-borne microbiome: linking diversity to function. Microbial Ecology. 2015 ; 70( 1): 255-265.
    • Vancouver

      Mendes LW, Tsai SM, Navarrete AA, Hollander M de, Veen JA van, Kuramae EE. Soil-borne microbiome: linking diversity to function. Microbial Ecology. 2015 ; 70( 1): 255-265.

    Referências citadas na obra
    Allison ST, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519
    Babujia LC, Hungria M, Franchini JC, Brookes PC (2010) Microbial biomass and activity at various soil depths in a Brazilian Oxisol after two decades of no-tillage and conventional tillage. Soil Biol Biochem 42:2174–2181
    Balvanera P, Pfisterer AB, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156
    Battistuzzi FU, Hedges SB (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 2:335–343
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300
    Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653
    Brody JR, Kern SE (2004) Sodium boric acid: Atriz-less, cooler conductive medium for DNA electrophoresis. Biotechnology 36:214–216
    Brossi MJL, Mendes LW, Germano MG, Lima AB, Tsai S (2014) Assessment of bacterial bph gene in Amazonian Dark Earth and their adjacent soils. PLoS One 9:e99597
    Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293
    Calegari A, Hargrove WL, Rheinheimer DDS et al (2008) Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: a model for sustainability. Agron J 100:1013–1019
    Cenciani K, Lambais MR, Cerri CC, Basilio de Azevedo LC, Feigl BJ (2009) Bacteria diversity and microbial biomass in forest, pasture and fallow in the southwestern Amazon Basin. Revista Brasileira de Ciência do Solo 33:907–916
    Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10
    Clark K, Gorley R (2006) PRIMER. Primer-E, Plymouth, UK, version 6
    Connel JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310
    Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153
    FAO (2012) Food and Agriculture Organization of United Nations. Agriculture and consumer protection department. Conservation agriculture, http://www.fao.org/nr/cgrfa/cthemes/cgrfa-micro-organisms/en//
    Fierer N, Ladau J, Clemente JC et al (2013) Reconstructing the microbial diversity and function of pre-agriculture tallgrass prairie soils in the United States. Science 342:621
    Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631
    Fisher WD (1958) On grouping for maximum homogeneity. J Am Stat Assoc 53:789–798
    Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation system in southern Brazil. Soil Tillage Res 92:18–29
    Germano MG, Cannavan FS, Mendes LW et al (2012) Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesq Agrop Brasileira 47:654–664
    Girvan MS, Campbell CD, Kilham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313
    Griffiths BS, Ritz K, Bardgett RD et al (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 2:279–294
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:9
    Jesus EC, Marsh TL, Tiedje JM, Moreira FMS (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011
    Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA (2012) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79:12–24
    Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity–ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5:e1083
    Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650
    Lauber CL, Knight R, Hamady M, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120
    Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697
    Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380
    Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. doi: 10.1038/ismej.2014.17
    Meyer F, Paarman D, D’Souza M et al (2008) The Metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386
    Navarrete AA, Cannavan FS, Taketani RG, Tsai SM (2010) A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity 2:787–809
    Navarrete AA, Taketani RG, Mendes LW, Cannavan FS, Moreira FMS, Tsai SM (2011) Land-use systems affects archaeal community structure and functional diversity in western Amazon soils. Revista Brasileira de Ciência do Solo 35:1527–1540
    Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607–621
    Newcombe RG (1998) Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med 17:2635–2650
    Olden JD, Leroy Poff N, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24
    Pan Y, Cassman N, Hollander M, Mendes LW, Korevaar H, Geerts RHEM, van Veen JA, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol. doi: 10.1111/1574-6941.12384
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721
    Philippot L, Spor A, Hénault C et al (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619
    R Development Core Team (2007) R: A Language and Environment for Statistical Computing: Vienna, Austria. ( http://www.R-project.org )
    Rodrigues JLM, Pellizari VH, Mueller R et al (2012) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993
    Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774
    SEPLAN. Secretaria de Estado e Planejamento e Coordenação Geral (2001) Mapa de solos do Estado de Mato Grosso, Mato Grosso. Available at: www.seplan.mt.gov.br (last accessed in 25 July, 2011)
    Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji P, Mirhoseyni AH (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2:106–115
    Souza RC, Cantão ME, Vasconcelos ANT, Nogueira MA, Hungria M (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation and succession. Appl Soil Ecol 72:49–61
    Taketani RG, Tsai SM (2010) The influence of different land uses on the structure of archaeal communities in Amazon anthrosols based on 16S rRNA and amoA genes. Microb Ecol 59:734–743
    Tardy V, Mathieu O, Lévêque J et al (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183
    Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74
    Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548
    Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1320054111
    Wittebolle L, Marzorati M, Clement L et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626
    Verkhovtseva N, Kubarev E, Mineev V (2007) Agrochemical agents in maintaining the structure of the soil microbial community. Russ Agric Sci 33:100–102
    de Vries FT, Thébault E, Liiri M et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296–14301
    Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H (2005) Diversity localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503
    Yachi NH, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468