Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats (2015)

  • Authors:
  • USP affiliated authors: BRUM, PATRICIA CHAKUR - EEFE
  • USP Schools: EEFE
  • DOI: 10.1007/s11010-015-2326-1
  • Subjects: HIPERTENSÃO; TREINAMENTO AERÓBIO; ESTRESSE OXIDATIVO; INSUFICIÊNCIA CARDÍACA; METABOLISMO DE PROTEÍNA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11010-015-2326-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11010-015-2326-1 (Fonte: Unpaywall API)

    Título do periódico: Molecular and Cellular Biochemistry

    ISSN: 0300-8177,1573-4919



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFE2679896-10PRO 2015 023
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANDRADE, Luiz Henrique Soares de; MORAES, Wilson Max Almeida Monteiro de; MATSUO JUNIOR, Eduardo Hiroshi; et al. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats. Molecular and cellular biochemistry, The Hague, v. 402, n. 1-2, p. 193-202, 2015. Disponível em: < http://dx.doi.org/10.1007/s11010-015-2326-1 > DOI: 10.1007/s11010-015-2326-1.
    • APA

      Andrade, L. H. S. de, Moraes, W. M. A. M. de, Matsuo Junior, E. H., Moura, E. de O. C. de, Antunes, H. K. M., Montemor, J., et al. (2015). Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats. Molecular and cellular biochemistry, 402( 1-2), 193-202. doi:10.1007/s11010-015-2326-1
    • NLM

      Andrade LHS de, Moraes WMAM de, Matsuo Junior EH, Moura E de OC de, Antunes HKM, Montemor J, Antonio EL, Bocalini DS, Serra AJ, Tucci PJF, Brum PC, Medeiros A. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats [Internet]. Molecular and cellular biochemistry. 2015 ; 402( 1-2): 193-202.Available from: http://dx.doi.org/10.1007/s11010-015-2326-1
    • Vancouver

      Andrade LHS de, Moraes WMAM de, Matsuo Junior EH, Moura E de OC de, Antunes HKM, Montemor J, Antonio EL, Bocalini DS, Serra AJ, Tucci PJF, Brum PC, Medeiros A. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats [Internet]. Molecular and cellular biochemistry. 2015 ; 402( 1-2): 193-202.Available from: http://dx.doi.org/10.1007/s11010-015-2326-1

    Referências citadas na obra
    Sliwa K, Stewart S, Gersh BJ (2011) Hypertension: a global perspective. Circulation 123(24):2892–2896. doi: 10.1161/CIRCULATIONAHA.110.992362
    Mendis S, Lindholm LH, Anderson SG, Alwan A, Koju R, Onwubere BJ, Kayani AM, Abeysinghe N, Duneas A, Tabagari S, Fan W, Sarraf-Zadegan N, Nordet P, Whitworth J, Heagerty A (2011) Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J Clin Epidemiol 64(12):1451–1462. doi: 10.1016/j.jclinepi.2011.02.001
    Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102(4):470–479
    Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, Capra A, Giannattasio C, Dell’Oro R, Grassi G, Sega R, Mancia G (2009) Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens 27(12):2458–2464. doi: 10.1097/HJH.0b013e328330b845
    Petriz BA, Franco OL (2014) Effects of hypertension and exercise on cardiac proteome remodelling. BioMed Res Int 2014:634132. doi: 10.1155/2014/634132
    Depre C, Powell SR, Wang X (2010) The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovasc Res 85(2):251–252. doi: 10.1093/cvr/cvp362
    Tsukamoto O, Minamino T, Okada K, Shintani Y, Takashima S, Kato H, Liao Y, Okazaki H, Asai M, Hirata A, Fujita M, Asano Y, Yamazaki S, Asanuma H, Hori M, Kitakaze M (2006) Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun 340(4):1125–1133. doi: 10.1016/j.bbrc.2005.12.120
    Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114(17):1821–1828. doi: 10.1161/CIRCULATIONAHA.106.637827
    Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121(8):997–1004. doi: 10.1161/CIRCULATIONAHA.109.904557
    Campos JC, Queliconi BB, Dourado PM, Cunha TF, Zambelli VO, Bechara LR, Kowaltowski AJ, Brum PC, Mochly-Rosen D, Ferreira JC (2012) Exercise training restores cardiac protein quality control in heart failure. PLoS One 7(12):e52764. doi: 10.1371/journal.pone.0052764
    Takaoka M, Ohkita M, Itoh M, Kobayashi Y, Okamoto H, Matsumura Y (2001) A proteasome inhibitor prevents vascular hypertrophy in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol 28(5–6):466–468
    Demasi M, Laurindo FR (2012) Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell. Cardiovasc Res 95(2):183–193. doi: 10.1093/cvr/cvs128
    Ludwig A, Fechner M, Wilck N, Meiners S, Grimbo N, Baumann G, Stangl V, Stangl K (2009) Potent anti-inflammatory effects of low-dose proteasome inhibition in the vascular system. J Mol Med (Berl) 87(8):793–802. doi: 10.1007/s00109-009-0469-9
    Meiners S, Hocher B, Weller A, Laule M, Stangl V, Guenther C, Godes M, Mrozikiewicz A, Baumann G, Stangl K (2004) Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension 44(4):471–477. doi: 10.1161/01.HYP.0000142772.71367.65
    Trippodo NC, Frohlich ED (1981) Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res 48(3):309–319
    Bertagnolli M, Schenkel PC, Campos C, Mostarda CT, Casarini DE, Bello-Klein A, Irigoyen MC, Rigatto K (2008) Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens 21(11):1188–1193. doi: 10.1038/ajh.2008.270
    Shang F, Taylor A (2011) Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16. doi: 10.1016/j.freeradbiomed.2011.03.031
    Cornelissen VA, Buys R, Smart NA (2013) Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens 31(4):639–648. doi: 10.1097/HJH.0b013e32835ca964
    Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, Fuchs FD, Hughes JW, Lackland DT, Staffileno BA, Townsend RR, Rajagopalan S (2013) Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the american heart association. Hypertension 61(6):1360–1383. doi: 10.1161/HYP.0b013e318293645f
    Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE, Ennis IL (2009) Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 53(4):708–714. doi: 10.1161/HYPERTENSIONAHA.108.126805
    Neto OB, Abate DT, Marocolo M Jr, Mota GR, Orsatti FL, Silva RC, Reis MA, da Rossi e Silva VJ (2013) Exercise training improves cardiovascular autonomic activity and attenuates renal damage in spontaneously hypertensive rats. Journal of sports science medicine 12(1):52–59
    Edwards KM, Wilson KL, Sadja J, Ziegler MG, Mills PJ (2011) Effects on blood pressure and autonomic nervous system function of a 12-week exercise or exercise plus DASH-diet intervention in individuals with elevated blood pressure. Acta Physiol (Oxf) 203(3):343–350. doi: 10.1111/j.1748-1716.2011.02329.x
    Roque FR, Briones AM, Garcia-Redondo AB, Galan M, Martinez-Revelles S, Avendano MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, Salaices M (2013) Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol 168(3):686–703. doi: 10.1111/j.1476-5381.2012.02224.x
    Council NR (2011) Guide for the care and use of laboratory animals. The National Academies Press, Washington DC, pp 1–209
    Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80(12):1258–1270. doi: 10.1038/ki.2011.368
    Dos Santos L, Antonio EL, Souza AF, Tucci PJ (2010) Use of afterload hemodynamic stress as a practical method for assessing cardiac performance in rats with heart failure. Can J Physiol Pharmacol 88(7):724–732
    Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, Krieger JE, Brum PC (2008) The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 294(1):R26–R32. doi: 10.1152/ajpregu.00424.2007
    Petriz BA, Franco OL (2014) Application of cutting-edge proteomics technologies for elucidating host-bacteria interactions. Adv Protein Chem Struct Biol 95:1–24. doi: 10.1016/B978-0-12-800453-1.00001-4
    Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473. doi: 10.1161/JAHA.112.004473
    Huang G, Shi X, Gibson CA, Huang SC, Coudret NA, Ehlman MC (2013) Controlled aerobic exercise training reduces resting blood pressure in sedentary older adults. Blood Press 22(6):386–394. doi: 10.3109/08037051.2013.778003
    Moraes-Silva IC, De La Fuente RN, Mostarda C, Rosa K, Flues K, Damaceno-Rodrigues NR, Caldini EG, De Angelis K, Krieger EM, Irigoyen MC (2010) Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats. Clin Exp Pharmacol Physiol 37(3):e114–e120. doi: 10.1111/j.1440-1681.2009.05333.x
    Gava NS, Veras-Silva AS, Negrao CE, Krieger EM (1995) Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertension 26(6.2):1129–1133
    Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, Irigoyen MC, Krieger EM, Krieger JE, Negrao CE, Brum PC (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–109. doi: 10.1152/japplphysiol.00493.2007
    Masson GS, Costa TS, Yshii L, Fernandes DC, Soares PP, Laurindo FR, Scavone C, Michelini LC (2014) Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity. PLoS One 9(5):e94927. doi: 10.1371/journal.pone.0094927
    Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrao CE, Brum PC (2004) Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol 37(12):1909–1917
    Jia LL, Kang YM, Wang FX, Li HB, Zhang Y, Yu XJ, Qi J, Suo YP, Tian ZJ, Zhu Z, Zhu GQ, Qin DN (2014) Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One 9(1):e85481. doi: 10.1371/journal.pone.0085481
    Veras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrao CE, Krieger EM (1997) Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol 273(6.2):H2627–H2631
    Whelton PK, He J, Appel LJ, Cutler JA, Havas S, Kotchen TA, Roccella EJ, Stout R, Vallbona C, Winston MC, Karimbakas J (2002) Primary prevention of hypertension: clinical and public health advisory from the National High Blood Pressure Education Program. JAMA 288(15):1882–1888
    Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39(1):89–105
    Osterholt M, Nguyen TD, Schwarzer M, Doenst T (2013) Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail Rev 18(5):645–656. doi: 10.1007/s10741-012-9346-7
    Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214(2):316–321. doi: 10.1002/jcp.21197
    Grune T, Schonheit K, Blasig I, Siems W (1994) Reduced 4-hydroxynonenal degradation in hearts of spontaneously hypertensive rats during normoxia and postischemic reperfusion. Cell Biochem Funct 12(2):143–147. doi: 10.1002/cbf.290120210
    Crowley SD (2014) The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid Redox Signal 20(1):102–120. doi: 10.1089/ars.2013.5258
    Isom AL, Barnes S, Wilson L, Kirk M, Coward L, Darley-Usmar V (2004) Modification of cytochrome c by 4-hydroxy-2-nonenal: evidence for histidine, lysine, and arginine-aldehyde adducts. J Am Soc Mass Spectrom 15(8):1136–1147. doi: 10.1016/j.jasms.2004.03.013
    Cunha TF, Bacurau AV, Moreira JB, Paixao NA, Campos JC, Ferreira JC, Leal ML, Negrao CE, Moriscot AS, Wisloff U, Brum PC (2012) Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One 7(8):e41701. doi: 10.1371/journal.pone.0041701
    Tang M, Li J, Huang W, Su H, Liang Q, Tian Z, Horak KM, Molkentin JD, Wang X (2010) Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc Res 88(3):424–433. doi: 10.1093/cvr/cvq217
    Chen B, Ma Y, Meng R, Xiong Z, Zhang C, Chen G, Zhang A, Dong Y (2010) MG132, a proteasome inhibitor, attenuates pressure-overload-induced cardiac hypertrophy in rats by modulation of mitogen-activated protein kinase signals. Acta Biochim Biophys Sin 42(4):253–258
    Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ (2014) Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats. Exp Gerontol 56:37–44. doi: 10.1016/j.exger.2014.02.014