Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model (2014)

  • Authors:
  • USP affiliated authors: REALI, MARCO ANTONIO PENALVA - EESC
  • USP Schools: EESC
  • DOI: 10.1007/s00449-014-1221-6
  • Subjects: FLOTAÇÃO; MODELOS MATEMÁTICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00449-014-1221-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00449-014-1221-6 (Fonte: Unpaywall API)

    Título do periódico: Bioprocess and Biosystems Engineering

    ISSN: 1615-7591,1615-7605



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Bioprocess and Biosystems Engineering

    ISSN: 1615-7591

    Citescore - 2017: 2.22

    SJR - 2017: 0.64

    SNIP - 2017: 0.829


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EESC2684597-10PROD-018308
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MORUZZI, Rodrigo Braga; REALI, Marco Antonio Penalva. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model. Bioprocess and Biosystems Engineering, Heidelberg, v. 37, n. 12, p. 2445-2452, 2014. Disponível em: < http://dx.doi.org/10.1007/s00449-014-1221-6 > DOI: 10.1007/s00449-014-1221-6.
    • APA

      Moruzzi, R. B., & Reali, M. A. P. (2014). The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model. Bioprocess and Biosystems Engineering, 37( 12), 2445-2452. doi:10.1007/s00449-014-1221-6
    • NLM

      Moruzzi RB, Reali MAP. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model [Internet]. Bioprocess and Biosystems Engineering. 2014 ; 37( 12): 2445-2452.Available from: http://dx.doi.org/10.1007/s00449-014-1221-6
    • Vancouver

      Moruzzi RB, Reali MAP. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model [Internet]. Bioprocess and Biosystems Engineering. 2014 ; 37( 12): 2445-2452.Available from: http://dx.doi.org/10.1007/s00449-014-1221-6

    Referências citadas na obra
    Jaeyoung P, Jin Hwan O, Ellis TG (2012) Evaluation of an on-site pilot static granular bed reactor (SGBR) for the treatment of slaughterhouse wastewater. Bioprocess Biosyst Eng 35:459–468
    Reali MAP, Penetra RG, Carvalho MEC (2001) Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage. Wat Sci Technol 44(4):205–212
    Pinto Filho ACT, Brandão CCS (2001) Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment. Wat Sci Technol 43(8):83–90
    Jung H-J, Lee J-W, Choi D-Y, Kim S-J, Kwak D-H (2006) Flotation efficiency of activated sludge flocs using population balance model in dissolved air flotation. Korean J Chem Eng 23(2):271–278
    Chung CM, Cho CM, Kim KW, Yamamoto YJ, Chung K (2012) TH Enhanced biological nitrogen removal in MLE combined with post-denitrification process and EF clarifier. Bioprocess Biosyst Eng 35:503–511
    Edzwald JK (1995) Principles and applications of dissolved air flotation. In: Ives KJ, Bernhardt HJ (eds.). Flotation processes in water and sludge treatment, 3–4 edn. vol 31, Wat Sci Tech, Great Britain, pp 1–23
    Haarhoff J, Edzwald JK (2001) Modelling of floc-bubble aggregate rise rates in dissolved air flotation. Water Sci Technol 43(8):175–184
    Flint LR, Howarth WJ (1971) The collision efficiency of small particles with spherical air bubbles. Chem Eng Sci 26:1155–1168
    Reay D, Ratcliff GA (1973) Removal of fine particles from water by dispersed air flotation: effects of bubble size and particle size on collection efficiency. Can J Chem Eng 51:178–185
    Cornet JC, Moisse R (1982) Contribution à lètablissement dún modèle mathèmatique décrivant le fonctionnement dún flottateur en traitement des eaux. (Contribution to The establishment of a mathematical model describing the operation of a flotation unit for water treatment). La Technique de Léau et de Lássainissement 428–429. pp 23–30
    Malley JP, Edzwald JK (1991) Concepts for dissolved-air flotation treatment of drinking waters. J Water Supply Res & Technol—AQUA 40(1):7–17
    Matsui Y, Fukushi K, Tambo N (1998) Modeling, simulation and operational parameters of dissolved air flotation. J Water Supply Res & Technol—AQUA 47(1):9–20
    Reali MAP (1991) Concepção e avaliação de um sistema compacto para tratamento de águas de abastecimento utilizando o processo de flotação por ar dissolvido e filtração com taxa declinante (Conception and evaluation of a compact water treatment system containing an original declined rate floto-filtration unit). PhD Thesis, São Carlos Engineering School, University of São Paulo
    Fukushi K, Tambo N, Matsui Y (1995) A kinetic model for dissolved air flotation in water and wastewater treatment. Water Sci Technol 31(3–4):37–47
    Liers S, Baeyens J, Mochtar J (1996) Modeling dissolved air flotation. Water Environ Res 68(6):1061–1075
    Leppinen DM (2000) A kinetic model on dissolved air flotation including the effects of interparticle forces. J Water Supply Res & Technol—AQUA 49:258–268
    Leppinen DM, Dalziel SB, Linden PF (2001) Modelling the global efficiency of dissolved air flotation. Water Sci Technol 43(8):159–166
    Han M, Kim W, Dockko S (2001) Collision efficiency factor of bubble and particle (β bp) in DAF: theory and experimental verification. Wat Sci Technol 43(8):139–144
    Kwak DH, Jung HJ, Lee JW, Kwon SB, Kim SJ, Yoo SJ, Won CH (2007) Rise velocity verification of bubble-floc agglomerates using population balance in DAF process. J Water Supply Res & Technol—AQUA 58(2):85–94
    Reali MAP, Campos JR (2002) Researches on flotation and development of new high performance DAF units for water treatment in Brazil. Res Adv Water Res 3:23–40
    Moruzzi RB, Reali MAP (2010) Characterization of micro-bubble size distribution and flow configuration in DAF contact zone by a non-intrusive image analysis system and tracer tests. Water Sci Technol 61(1):253–262
    Reali MAP, Patrizzi LJ (2007) The influence of the contact zone configuration on the efficiency of a DAF pilot plant. In: Proceedings of the 5th international conference on flotation in water and wastewater systems, vol 1, Seoul pp 135–142, 11–14 September 2007
    Moruzzi RB, Reali MAP (2007) Método para determinação de distribuição de tamanho de microbolhas (DTMB) em sistemas flotação (FAD) para tratamento de águas utilizando a análise de imagem digital (Method for measuring bubbles sizes distribution (BSD) in drinking water treatment flotation (DAF) systems by using digital image analysis). Engenharia Sanitaria e Ambiental 12(3):273–283
    Moruzzi RB, Oliveira SC (2013) Mathematical modelling and analysis of flocculation process in chambers in series. Bioprocess Biosyst Eng 36:357–363
    Reali MAP, Penetra RG, Campos JR (2007) Dissolved-air flotation associated with an anaerobic reactor, as applied to sewage treatment. Int J Environ Pollut 30(2):174–192
    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: