Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus (2014)

  • Authors:
  • USP affiliated authors: CORREA, BENEDITO - ICB ; NASCIMENTO, CLAUDIO AUGUSTO OLLER DO - EP
  • USP Schools: ICB; EP
  • DOI: 10.1038/srep06404
  • Subjects: MICROBIOLOGIA; LEVEDURAS; BIOMASSA
  • Language: Inglês
  • Imprenta:
  • Source:
    • ISSN: 2045-2322
    • Volume/Número/Paginação/Ano: v. 4, Art. 6404, p. 1-6, 2014
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep06404 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by-nc-nd
    Versões disponíveis em Acesso Aberto do: 10.1038/srep06404 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100120912PC ICB BMM SEP 2014
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SALVADORI, Marcia Regina; NASCIMENTO, Cláudio Augusto Oller do; CORRÊA, Benedito. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. , London, v. 4, p. 1-6, 2014. Disponível em: < http://dx.doi.org/10.1038/srep06404 > DOI: 10.1038/srep06404.
    • APA

      Salvadori, M. R., Nascimento, C. A. O. do, & Corrêa, B. (2014). Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus, 4, 1-6. doi:10.1038/srep06404
    • NLM

      Salvadori MR, Nascimento CAO do, Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus [Internet]. 2014 ; 4 1-6.Available from: http://dx.doi.org/10.1038/srep06404
    • Vancouver

      Salvadori MR, Nascimento CAO do, Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus [Internet]. 2014 ; 4 1-6.Available from: http://dx.doi.org/10.1038/srep06404

    Referências citadas na obra
    Patil, V. et al. Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films. JSEMAT. 1, 35–41 (2011).
    Conte, M., Prosini, P. P. & Passerini, S. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials. Mater. Sci. Eng. B. 108, 2–8 (2004).
    Dooley, K. M., Chen, S. Y. & Hoss, J. R. H. Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane. J. Catal. 145, 402–408 (1994).
    Biju, V. & Khadar, M. A. Analysis of AC electrical properties of nanocrystalline nickel oxide. Mater. Sci. Eng. A. 304, 814–817 (2001).
    Soriano, L., Abbate, M., Vogel, J. & Fuggle, J. C. The electronic structure of mesoscopic NiO particles. Chem. Phys. Lett. 208, 460–464 (1993).
    Kodama, R. H., Makhlouf, S. A. & Berkowitz, A. Finite Size Effects in Antiferromagnetic NiO Nanoparticles. Phys. Rev. Lett. 79, 1393–1396 (1997).
    Kodama, R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999).
    Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115–2117 (2001).
    Liu, Z. et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. Adv. Mater. 22, 1946–1948 (2003).
    Hashmi, A. S. K. & Hutchings, G. J. Gold Catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).
    Huang, X. H., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine. 2, 681–693 (2007).
    Wu, Y. L., Li, Y. N., Liu, P., Gardner, S. & Ong, B. S. Studies of gold nanoparticles as precursors to printed conductive features for thin-film transistors. Chem. Mater. 18, 4627–4632 (2006).
    Varshney, R., Bhadauria, S. & Gaur, M. S. A review: Biological synthesis of silver and copper nanoparticles. Nano Biomed. Eng. 4, 99–106 (2012).
    Bhainsa, K. C. & D' Souza, S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B: Biointerf. 47, 160–164 (2006).
    Ahmad, A. et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B: Biointerf. 28, 313–318 (2003).
    Kowshik, M. et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 14, 95–100 (2003).
    Mukherjee, P. et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem. Biochem. 3, 461–463 (2002).
    Shankar, S. S., Ahmada, A., Pasrichaa, R. & Sastry, M. Bioreduction of chloroaurate íons by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822–1826 (2003).
    Bharde, A. et al. Extracellular biosynthesis of magnetite using fungi. Small 2, 135–141 (2006).
    Bansal, V., Rautaray, D., Ahmad, A. & Sastry, M. Biosynthesis of zircônia nanoparticles using the fungus Fusarium oxysporum. J. Materials Chem. 14, 3303–3305 (2004).
    Dameron, C. T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989).
    Mukherjee, P. et al. Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem. Int. 40, 3585–3588 (2001).
    Senapati, S. et al. Fungus mediated synthesis of silver nanoparticles: A novel biological approach. Indian J. Phys. 78A, 101–105 (2004).
    Gericke, M. & Pinches, A. Microbioal production of gold nanoparticles. Gold Bull. 39, 22–28 (2006a).
    Gericke, M. & Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 83, 132–140 (2006b).
    Salvadori, M. R., Lepre, L. F., Ando, R. A., do Nascimento, C. A. O. & Corrêa, B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. Plos One 8, 1–8 (2013).
    Salvadori, M. R., Ando, R. A., do Nascimento, C. A. O. & Corrêa, B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. Plos One 9, 1–8 (2014).
    Song, P., Wen, D., Guo, Z. X. & Korakianitis, T. Oxidation investigation of nickel nanoparticles. Phys. Chem. Chem. Phys. 10, 5057–5065 (2008).
    Lee, S. et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 128, 10658–10659 (2006).
    Furstenau, R. P., McDougall, G. & Langell, M. A. Initial stages of hydrogen reduction of NiO(100). Surf. Sci. 150, 55–79 (1985).
    Bansal, V., Ahamad, A. & Sastry, M. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline sílica. J. Am. Chem. Soc. 128, 14059–14066 (2006).
    Caesartonthat, T. C., Kloeke, F. V., Geesey, G. G. & Henson, J. M. Melanin production by filamentous soil fungus in response to copper and localization of copper sulfide by sulfide-silver staining. Appl. Environ. Microbiol. 61, 1968–1975 (1995).
    Kapoor, A., Viraraghavan, T. & Cullimore, D. R. Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 70, 95–104 (1999).
    Mullen, M. D., Wolf, D. C., Beveridge, T. J. & Bailey, G. W. Sorption of heavy metals by soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. Biochem. 24, 129–135 (1992).
    Kapoor, A. & Viraraghavan, T. Heavy metals biosorption site in Aspergillus niger. Bioresour. Technol. 61, 221–227 (1997).
    Sarret, G. et al. Structural determination of Pb binding sites in Penicillium chrysogenum cell wall by EXAFS spectroscopy and solution chemistry. J. Synchrotron Radiat. 6, 414–416 (1999).
    Zhou, J. L. Zn biosorption by Rhizopus arrhizus and other fungi. Appl. Microbiol. Biotechnol. 51, 686–693 (1999).
    Shoaib, A., Naureen, A., Tanveer, F. & Aslam, N. I. Removal of Ni(II) Ions from Substrate using Filamentous Fungi. Inter. J. Agr. & Bot. 14, 831–833 (2012).
    Akar, T., Celik, S., Ari, A. G. & Akar, S. T. Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. J. Chem. Technol. Biotechnol. 1, 1–10 (2012).
    Cataldo, D. A., McFadden, K. M., Garland, T. R. & Wildung, R. E. Organic constituents and complexation of nickel (II), iron (III), cadmium (II) and plutonium (IV) in soybean xylem exudates. Plant Physiol. 86, 734–739 (1988).
    Brintzinger, H. The structures of adenosine triphosphate metal ion complexes in aqueous solution. Biochem. Biophys. Acta. 77, 343–345 (1963).
    Leberman, R. & Robin, B. R. Metal complexes of histidine. Trans. Farady Soc. 55, 1660–1670 (1957).
    Hendrickson, H. S. & Fullington, J. G. Stabilities of metal complexes of phospholipides: Ca (II), Mg (II) and Ni (II) complexes of phosphatidylserine and triphosphoinositide. Biochemistry 4, 1599–1605 (1965).
    Vigneshwaran, N. et al. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61, 1413–1418 (2007).
    Basavaraja, S. S., Balaji, S. D., Lagashetty, A. K., Rajasab, A. H. & Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 43, 1164–1170 (2008).
    Kumar, B. N., Seshadri, N., Ramana, D. K. V., Seshaiah, K. & Reddy, A. V. R. Equilibrium, Thermodynamic and Kinetic studies on Trichoderma viride biomass as biosorbent for the removal of Cu (II) from water. Separ. Sci. Technol. 46, 997–1004 (2011).
    Ahmad, I., Ansari, M. I. & Aqil, F. Biosorption of Ni, Cr and Cd by metal tolerante Aspergillus niger and Penicillium sp using single and multi-metal solution. Indian J. Exp. Biol. 44, 73–76 (2006).
    Volesky, B. Biosorption process simulation tools. Hydrometallurgy. 71, 179–190 (2003).