Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A sentiment-based item description approach for kNN collaborative filtering (2015)

  • Authors:
  • USP affiliated authors: MANZATO, MARCELO GARCIA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1145/2695664.2695747
  • Subjects: WORLD WIDE WEB; SISTEMAS MULTIMÍDIA
  • Language: Inglês
  • Imprenta:
  • ISBN: 9781450331968
  • Source:
  • Conference titles: Symposium on Applied Computing - SAC
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1145/2695664.2695747 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1145/2695664.2695747 (Fonte: Unpaywall API)

    Título do periódico: Proceedings of the 30th Annual ACM Symposium on Applied Computing - SAC '15

    ISSN:



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2690464-10PROD-2690464
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      D'ADDIO, Rafael M; MANZATO, Marcelo Garcia. A sentiment-based item description approach for kNN collaborative filtering. Anais.. New York: ACM, 2015.Disponível em: DOI: 10.1145/2695664.2695747.
    • APA

      D'Addio, R. M., & Manzato, M. G. (2015). A sentiment-based item description approach for kNN collaborative filtering. In Proceedings. New York: ACM. doi:10.1145/2695664.2695747
    • NLM

      D'Addio RM, Manzato MG. A sentiment-based item description approach for kNN collaborative filtering [Internet]. Proceedings. 2015 ;Available from: http://dx.doi.org/10.1145/2695664.2695747
    • Vancouver

      D'Addio RM, Manzato MG. A sentiment-based item description approach for kNN collaborative filtering [Internet]. Proceedings. 2015 ;Available from: http://dx.doi.org/10.1145/2695664.2695747

    Referências citadas na obra
    C. Aggarwal and C. Zhai. A survey of text clustering algorithms. In C. C. Aggarwal and C. Zhai, editors, Mining Text Data, pages 77--128. Springer US, 2012.
    R. D'Addio, M. Conrado, S. Resende, and M. Manzato. Generating recommendations based on robust term extraction from users' reviews. In Proceedings of the 20th Brazilian Symposium on Multimedia and the Web, WebMedia '14, pages 55--58, New York, NY, USA, 2014. ACM.
    R. D'Addio and M. Manzato. A collaborative filtering approach based on user s reviews. In Proceedings of the Brazilian Conference on Intelligent Systems (BRACIS), page (to appear), 2014.
    G. Ganu, Y. Kakodkar, and A. Marian. Improving the quality of predictions using textual information in online user reviews. Inf. Syst., 38(1):1--15, Mar. 2013.
    M. Hu and B. Liu. Mining and summarizing customer reviews. In PROC of the 10th ACM INT CNF on Knowledge Discovery and Data Mining (SIGKDD), KDD '04, pages 168--177, New York, NY, USA, 2004. ACM.
    H. Kim, K. Han, M. Yi, J. Cho, and J. Hong. Moviemine: personalized movie content search by utilizing user comments. IEEE Transactions on Consumer Electronics, 58(4):1416--1424, 2012.
    Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1):1:1--1:24, Jan. 2010.
    B. Liu and L. Zhang. A survey of opinion mining and sentiment analysis. In C. C. Aggarwal and C. Zhai, editors, Mining Text Data, pages 415--463. Springer US, 2012.
    P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 73--105. Springer US, 2011.
    C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.
    C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 55--60, 2014.
    S. Pero and T. Horváth. Opinion-driven matrix factorization for rating prediction. In S. Carberry, S. Weibelzahl, A. Micarelli, and G. Semeraro, editors, User Modeling, Adaptation, and Personalization, volume 7899 of Lecture Notes in Computer Science, pages 1--13. Springer Berlin Heidelberg, 2013.
    R. Qumsiyeh and Y.-K. Ng. Predicting the ratings of multimedia items for making personalized recommendations. In PROC of the 35th Annual INT ACM CNF on Research and Development in Information Retrieval (SIGIR), pages 475--484, New York, NY, USA, 2012.
    F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems handbook. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 1--35. Springer US, 2011.
    R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with compositional vector grammars. In PROC of the ACL CNF, 2013.
    R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In PROC of the CNF on Empirical Methods in Natural Language Processing, pages 1631--1642. Association for Computational Linguistics, October 2013.
    K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1, NAACL '03, pages 173--180, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.