Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness (2014)

  • Authors:
  • USP affiliated authors: TINÓS, RENATO - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1007/s12293-014-0139-5
  • Subjects: ALGORITMOS GENÉTICOS; BIOINFORMÁTICA; ENTROPIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12293-014-0139-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12293-014-0139-5 (Fonte: Unpaywall API)

    Título do periódico: Memetic Computing

    ISSN: 1865-9284,1865-9292



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Memetic Computing

    ISSN: 1865-9284

    Citescore - 2017: 2.2

    SJR - 2017: 0.692

    SNIP - 2017: 1.33


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2691265pcd 2691265 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      OLIVEIRA, Lariza Laura; TINÓS, Renato. Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness. Memetic Computing, Heidelberg, v. 6, n. 3, p. 157-170, 2014. Disponível em: < http://dx.doi.org/10.1007/s12293-014-0139-5 > DOI: 10.1007/s12293-014-0139-5.
    • APA

      Oliveira, L. L., & Tinós, R. (2014). Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness. Memetic Computing, 6( 3), 157-170. doi:10.1007/s12293-014-0139-5
    • NLM

      Oliveira LL, Tinós R. Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness [Internet]. Memetic Computing. 2014 ; 6( 3): 157-170.Available from: http://dx.doi.org/10.1007/s12293-014-0139-5
    • Vancouver

      Oliveira LL, Tinós R. Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness [Internet]. Memetic Computing. 2014 ; 6( 3): 157-170.Available from: http://dx.doi.org/10.1007/s12293-014-0139-5

    Referências citadas na obra
    Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379
    Schoenauer S, Clote P (1997) How optimal is the genetic code. Proceedings of the German conference on bioinformatics (GCB’97). IEEE Press, New York, pp 65–67
    Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248
    Di Giulio M (2005) The origin of the genetic code: theories and their relationships, a review. Biosystems 2:175–184
    Di Giulio M, Capobianco MR, Medugno M (1994) On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. J Theor Biol 168:43–51
    Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966) The molecular basis for the genetic code. Proc Natl Acad Sci USA 55:4
    Venton D (2014) Highlight: Changing the canon—revisiting a classic experiment to alter the genetic code. Genome Biol Evol 6(3):642
    Bernhardt HS, Patrick WM (2014) Genetic code evolution started with the incorporation of glycine, followed by other small hydrophilic amino acids. J Mol Evol 78(6):307–309
    Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. In: Evolving genes and proteins. Academic Press, New York, 377–397 (1965) ac
    Tze-Fei Wong J (1975) A co-evolution theory of the genetic code. Natl Acad Sci 72:5
    Di Giulio M (2005) The origin of the genetic code: theories and their relationships, a review. BioSystems 80:175–184
    Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Biol 33:412–417
    Santos J, Monteagudo Á (2010) Study of the genetic code robustness by means of a genetic algorithm. J Theor Biol 264:854–865
    Santos J, Monteagudo Á (2011) Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinform 12:56
    Oliveira LL, Tinós R (2013) Using base position errors in an entropy-based evaluation function for the study of genetic code robustness. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), pp 99–111 (2013)
    Oliveira LL, Tinós R (2012) Entropy-based evaluation function for the investigation of genetic code robustness. In: Proceedings of the ACM conference on bioinformatics, computational biology and biomedicine (BCB ’12), pp 558–560
    Landweber LF, Winfree E (2002) Evolution as computation: DIMACS Workshop. Princeton, Springer
    Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. W.H. Freeman, New York
    Lodish H, Berk A, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. W.H. Freeman, New York
    Goldman N (1993) Further results on error minimization in the genetic code. J Mol Evol 37:662–664
    Motoo K (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
    Konak A, Coit D, Smith A (1006) multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007
    Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inform Sci 237:82–117